•  
  •  
 

Abstract

Background: As glycoproteins widely distributed in the plants of carbohydrate binding specificity, lectins are considered macromolecules of paramount significance. Their sugar based binding dependent agglutination property nominates them for blood grouping as well as GIT complications management.

Objective: Exploring the nature, classifications, and pharmacological properties of lectins, particularly those found in Capparis species and their aqueous extracts within the last 20-25 years is the aim of this review.

Methods: This review evaluates pharmacological studies of Capparis lectins, emphasizing therapeutic effects identified through focused keyword searches.

Results: Capparis lectins and aqueous extracts exhibit diverse biological activities, including anti-rheumatic, hypoglycemic, immunomodulatory, and antineoplastic effects with apoptosis-inducing properties. Notably, isolated proteins—both dimeric lectins and monomeric non-lectins—from Capparis spinosa seeds demonstrated potent inhibitory activity against HIV-1 reverse transcriptase, alongside cytotoxicity against hepatoma and breast cancer cell lines. The aqueous extracts also showed antimicrobial (antibacterial, antifungal, antiparasitic), anti-hyperlipidemic, antihistaminic, chondrocyte-protective, and wound-healing effects. Immunomodulatory benefits were confirmed in vivo and in vitro for Capparis zeylanica Linn. leaf extracts.

Conclusion: The lectins of Capparis species hold promise for developing anti-HIV reverse transcriptase inhibitors and as adjuvants in antineoplastic chemotherapy pending formulation improvements to enhance bioavailability and specificity. However, despite the promising bioactivity, further structural and ligand-binding characterization of the lectins from various Capparis plant parts is required.

References

[1] Swanson KE, Song X, Lee S, Di Y, Cao L. Structural in sights into BanLec-mediated antiviral activity: implications for broad spectrum lectin therapeutics. J Biol Chem 2024; 299:104567.

[2] Jin S, Cheng Y, Reid S, Li M, Wang B. Carbohydrate recognition by boronolectins, small molecules, and lectins. Med Res Rev 2010;30(2):171—257.

[3] Komath SS, Kavitha M, Swamy MJ. Beyond carbohydrate binding: new directions in plant lectin research. Org Bio mol Chem 2006;4(6):973—88

. [4] Huang H, Chen X, He A, Li Z. Advances in the application of griffithsin and its analogues in antiviral therapy. Virology 2025;590:124—38.

[5] Kim J, Park E, Choi YS, Moon JH. Engineering concanav alin A variants with enhanced specificity for therapeutic targeting. Carbohydr Res 2023;521:108587.

[6] Zhu L, Li X, Guo Z, et al. Microbial lectins as adhesion antagonists: structural features and biomedical potentials. Front Microbiol 2024;15:1178907.

[7] Liu B, Bian HJ, Bao JK. Plant lectins: potential antineo plastic drugs from bench to clinic. Cancer Lett 2010;287(1): 1—12.

[8] Mazalovska M, Kouokam JC. Lectins as promising thera peutics for the prevention and treatment of HIV and other potential coinfections. BioMed Res Int 2018;2018(1): 3750646.

[9] Li Q, Zhang Y, Wang J, et al. Hemagglutination profiles of Fabaceae lectins across plant tissues: roots, seeds, leaves, and bulbs — implications for function. Plant Physiol Bio chem 2024;190:45—57.

[10] Zhao Z, Li H, Wang S, et al. Genome-wide identification and expression patterns of lectin genes in Solanum tuberosum (potato) reveals lineage-specific expansion and stress responses. Plant Physiol Biochem 2024;189:111—24.

[11] Gupta P, Sharma MK, Singh P, et al. Lectins of leguminous seeds: diversity, functions and potential applications. Int J Biol Macromol 2023;223:103—19.

[12] Kaur A, Komboj SS, Singh J. Isolation of a new lectin from the bulbs of Crinum latifolium (L.). J Biol Sci 2006;6:9—14.

[13] Raja SB, Murali MR, Kumar NK, Devaraj SN. Isolation and partial characterisation of a novel lectin from Aegle mar melos fruit and its effect on adherence and invasion of Shigellae to HT29 cells. PLoS One 2011;6(1):e16231.

[14] Dan X, Liu W, Ng TB. Development and applications of lectins as biological tools in biomedical research. Med Res Rev 2016;36(2):221—47.

[15] Chen J, Sun R, Liu Y, et al. Characterization of a novel lectin from Hibiscus mutabilis with sugar-binding specificity and anti-fungal activity. J Plant Biochem Biotechnol 2025; 34(1):23—32.

[16] Zhang Y, Yang X, Li J, et al. Comparative transcriptomics reveals lectin gene family expansion and tissue-specific expression in Astragalus membranaceus, highlighting root lectin roles. Front Plant Sci 2023;14:1194567.

[17] Liu T, Li Z, Chen L, et al. A mannose/glucose-specific lectin from Remusatia vivipara tubers: purification, binding specificity, and stability. Phytochemistry 2023;203:112613.

[18] Rashidbaghan A, Mostafaie A, Yazdani Y, Mansouri K. Urtica dioica agglutinin (a plant lectin) has a caspase dependent apoptosis induction effect on the acute lymphoblastic leukemia cell line. Cell Mol Biol 2020;66(6): 121—6.

[19] Silva NRG, Araújo FN. Antibacterial activity of plant lec tins: a review. Braz Arch Biol Technol 2021;64:e21200631.

[20] Singh P, Gupta P, Kumar A, et al. A comprehensive survey of legume lectins in plants and their absence in animals: evolutionary implications. Int J Biol Macromol 2023;223: 831—42.

[21] Zhao Y, Chen S, Liu D, et al. Comparative proteomic analysis of root, tuber, and leaf lectins in Dioscorea alata suggests root- and tuber-biased accumulation. J Proteome Res 2024;23(4):1445—57.

[22] Lam SK, Ng TB. Lectins: production and practical appli cations. Appl Microbiol Biotechnol 2011;89:45—55.

[23] Li X, Zhao H, Wang P, et al. Structural basis of carbohy drate binding by plant lectins and implications for cell surface interactions. Glycobiology 2024;34(2):120—31.

[24] Nguyen TT, Lee JY, Kim BH, et al. Characterization of novel algal lectin binding specificity and hemagglutination activity against human erythrocytes. Carbohydr Res 2023; 523:108644.

[25] Huang H, Sun R, He A, et al. Competitive inhibition of plant lectin—cell interactions by monosaccharides, oligo saccharides, and glycoconjugates: insights from binding assays. Glycobiology 2024;34(3):178—90.

[26] Li Y, Zhao J, Wang X, et al. Engineering multivalent lectins: controllable valency and tunable specificity via modular design. Adv Sci (Weinh) 2023;10(15):e2207290.

[27] Wang Q, Li Z, Chen B, et al. Inhibition of lectin-mediated agglutination by glycoproteins: a mechanistic study. Int J Biol Macromol 2025;239:124987.

[28] Singh R, Gupta P, Sharma VK, et al. Structural basis of French bean (Phaseolus vulgaris) hemagglutinin binding and inhibition by glycan ligands. J Mol Biol 2025;437(1): 167—83.

[29] Chen J, Liu Y, Wu T, et al. Characterization of a novel Phaseolus lectin that cross-agglutinates mammalian and bacterial cells and its inhibition by simple sugars. Carbo hydr Res 2023;531:108573.

[30] Patel R, Singh A, Sharma N, et al. Plant lectins as natural hemagglutinins for ABO blood group determination: mo lecular mechanisms and clinical applications. Transfus Med Rev 2024;38(1):31—42.

[31] Fang EF, Lin P, Wong JH, Tsao SW, Ng TB. A lectin with anti-HIV-1 reverse transcriptase, antitumor, and nitric MA'AEN JOURNAL FOR MEDICAL SCIENCES 2025;4:221—239 235 oxide-inducing activities from seeds of Phaseolus vulgaris cv. extralong autumn purple bean. J Agric Food Chem 2010;58(4):2221—9.

[32] Zhou X, Luo J, Li Y, et al. Sugar-recognition mechanisms governing hemagglutination by legume lectins: new in sights from glycan microarray analysis. Front Plant Sci 2023;14:1198754.

[33] Osterne VJS, De Sloover G, Van Damme EJM. Revisiting legume lectins: Structural organization and carbohydrate binding properties. Carbohydr Res 2024;544:109241.

[34] Kabir SR, Hasan I, Zubair MA. Lectins from medicinal plants: characterizations and biological properties. J Funct Foods 2014;42:339—56.

[35] Gong T, Wang X, Yang Y, Yan Y, Yu C, Zhou R, et al. Plant lectins activate the NLRP3 inflammasome to promote in f lammatory disorders. J Immunol 2017;198(5):2082—92.

[36] Kamiya Y, Satoh T, Kato K. Molecular and structural basis for N-glycan-dependent determination of glycoprotein fates in cells. Biochim Biophys Acta Gen Subj 2012;1820(9): 1327—37.

[37] Lagarda-Diaz I, Guzman-Partida AM, Vazquez-Moreno L. Legume lectins: proteins with diverse applications. Int J Mol Sci 2017;18(6):1242.

[38] Brooks SA, Leathem AJ, Thomas-Oates J. Lectins as ver satile tools to explore cellular glycosylation. Essays Bio chem 2024;68(3):215—35.

[39] Leusmann S, Schmidt S, Rademacher C, et al. Glycomi metics for the inhibition and modulation of lectins. Chem Soc Rev 2023;52(13):4852—912.

[40] Faheina-Martins GV, da Silveira AL, Cavalcanti BC, Ramos MV, Moraes MO, Pessoa C, et al. Antiproliferative effects of lectins from Canavalia ensiformis and Canavalia brasiliensis in human leukemia cell lines. Toxicol Vitro 2012; 26(7):1161—9.

[41] Konozy EHE, Hamorsky KT, Van Damme EJM. The dazzling world of plant lectins. J Taiwan Inst Chem Eng 2024;158:105089.

[42] Cavada BS, Grangeiro TB, Osterne VJS. Revisiting Proteus 2.0: Two decades of pioneering lectin research and inno vation. ACS Bio Med Chem Au 2025;10(24):25176—91.

[43] Van DammeEJM,PeumansWJ,OsterneVJS,editors. Plant lectins: From model species to crop plants [Special Issue]. Int J Mol Sci; 2023—2024.

[44] Sharon N. Lectin-carbohydrate complexes of plants and animals: an atomic view. Trends Biochem Sci 1993;18(6): 221—6.

[45] Meng X, Zhang Y, Xu W, et al. Molecular docking insights into plant lectin—carbohydrate recognition mechanisms: balancing hydrogen bonding and hydrophobic in teractions. Int J Biol Macromol 2023;251:127403.

[46] Konidala P, Niemeyer B. Molecular dynamics simulations of pea (Pisum sativum) lectin structure with octyl glucoside detergents: ligand interactions and dynamics. Biophys Chem 2007;128(2—3):215—30.

[47] Goldstein IJ, Poretz RD. Isolation, physicochemical char acterization, and carbohydrate-binding specificity of lec tins. Lectins: Prop Funct Appl Biol Med 2012:233—47.

[48] Lam SK, Han QF, Ng TB. Isolation and characterization of a lectin with potentially exploitable activities from caper (Capparis spinosa) seeds. Biosci Rep 2009;29(5):293—9.

[49] Bari AU, Silva HC, Silva MTL, Pereira Junior FN, Cajazeiras JB, Sampaio AH, et al. Purification and partial characterization of a new mannose/glucose-specific lectin from Dialium guineense Willd seeds that exhibits toxic ef fect. J Mol Recogn 2013;26(8):351—6.

[50] Wong JH, Wong CCT, Ng TB. Purification and character ization of a galactose-specific lectin with mitogenic activity from pinto beans. Biochim Biophys Acta Gen Subj 2006; 1760(5):808—13.

[51] Goldstein IJ, Hughes RC, Monsigny M, Osawa T, Sharon N. What should be called a lectin. Nature 1980; 285(5760):66.

[52] Wong JH, Chan HYE, Ng TB. A mannose/glucose-specific lectin from Chinese evergreen chinkapin (Castanopsis chi nensis). Biochim Biophys Acta Gen Subj 2008;1780(9): 1017—22.

[53] Leung EHW, Wong JH, Ng TB. Concurrent purification of two defense proteins from French bean seeds: a defensin like antifungal peptide and a hemagglutinin. J Pept Sci 2008;14(3):349—53.

[54] Escribano J, Rubio A, Alvarez-Ortí M, Molina A, FernandezJA.Purificationandcharacterizationofamannan bindinglectinspecificallyexpressedincormsofsaffronplant (Crocus sativus L.). J Agric Food Chem 2000;48(2):457—63.

[55] Wong JH, Ng TB. Isolation and characterization of a glucose/mannose-specific lectin with stimulatory effect on nitric oxide production by macrophages from the emperor banana. Int J Biochem Cell Biol 2006;38(2):234—43.

[56] Wong JH, Ng TB. Isolation and characterization of a glucose/mannose/rhamnose-specific lectin from the knife bean Canavalia gladiata. Arch Biochem Biophys 2005;439(1): 91—8.

[57] Narahari A, Nareddy PK, Swamy MJ. A new chitooligo saccharide-specific lectin from snake gourd (Trichosanthes anguina) phloem exudate: purification, physicochemical characterization and thermodynamics of saccharide bind ing. Biochimie 2011;93(10):1676—84.

[58] Garcia-Pino A, Buts L, Wyns L, Loris R. Interplay between metal binding and cis/trans isomerization in legume lec tins: structural and thermodynamic study of P. angolensis lectin. J Mol Biol 2006;361(1):153—67.

[59] Stirpe F, Bolognesi A, Bortolotti M, Farini V, Lubelli C, Pelosi E, et al. Characterization of highly toxic type 2 ribosome-inactivating proteins from Adenia lanceolata and Adenia stenodactyla (Passifloraceae). Toxicon 2007;50(1): 94—105.

[60] Azarkan M, Feller G, Vandenameele J, Herman R, El Mahyaoui R, Sauvage E, et al. Biochemical and structural characterization of a mannose-binding jacalin-related lec tin with two sugar-binding sites from pineapple (Ananas comosus) stem. Sci Rep 2018;8(1):11508.

[61] Reyes-Lopez CA, Hernandez-Santoyo A, Pedraza Escalona M, Mendoza G, Hernandez-Arana A, Rodríguez Romero A. Insights into a conformational epitope of Hev b 6.02 (hevein). Biochem Biophys Res Commun 2004;314(1): 123—30.

[62] Rutenber E, Katzin BJ, Ernst S, Collins EJ, Mlsna D, Ready MP, et al. Crystallographic refinement of ricin to 2.5 Å. Proteins 1991;10(3):240—50.

[63] Singh RS, Kaur HP, Kennedy JF. Lectins in plant defense and their role as biotechnological tools. Int J Biol Macromol 2023;247:125912.

[64] Sulak O, Cioci G, Lameignere E, Balloy V, Round A, Gutsche I, et al. Burkholderia cenocepacia BC2L-C is a super lectin with dual specificity and proinflammatory activity. PLoS Pathog 2011;7(9):e1002238.

[65] Hopp TP, Hemperly JJ, Cunningham BA. Amino acid sequence and variant forms of favin, a lectin from Vicia faba. J Biol Chem 1982;257(8):4473—83.

[66] Bally I, Drumont G, Rossi V, Guseva S, Botova M, Reiser JB, Thepaut M, Dergan Dylon S, Dumestre Perard C, Gaboriaud C, Fieschi F. Revisiting the interaction between complement lectin pathway protease MASP-2 and SARS-CoV-2 nucleoprotein. Front Immunol 2024;15: 1419165.

[67] Khan F, Jahan S, Ahmad N, et al. Plant lectins in nano technology: prospects for targeted drug delivery and can cer therapeutics. Front Pharmacol 2023;14:1198745.

[68] Mody R, Joshi SA, Chaney W. Use of lectins as diagnostic and therapeutic tools for cancer. J Pharmacol Toxicol Methods 1995;33(1):1—10.

[69] Napole~ao TH, Rodrigues TM, de Castro I, et al. Lectins as Natural Antibiofilm Agents in the Fight Against Microbial Pathogens. Molecules 2025;30(16):3395. 236 MA'AEN JOURNAL FOR MEDICAL SCIENCES 2025;4:221—239

[70] El-Araby MM, El-Shatoury EH, Soliman MM, Shaaban HF. Characterization and antimicrobial activity of lectins pu rified from three Egyptian leguminous seeds. AMB Ex press 2020;10:1—14.

[71] LamSK, NgTB.Aproteinwith antiproliferative, antifungal and HIV-1 reverse transcriptase inhibitory activities from caper (Capparis spinosa) seeds. Phytomedicine 2009;16(5): 444—50.

[72] Klafke GB, Borsuk S, Gonçales RA, Arruda FVS, Carneiro VA, Teixeira EH, et al. Inhibition of initial adhe sion of oral bacteria through a lectin from Bauhinia varie gata L. var. variegata expressed in Escherichia coli. J Appl Microbiol 2013;115(5):1222—30.

[73] Luo Y, Xu X, Liu J, Li J, Sun Y, Liu Z, et al. A novel mannose-binding tuber lectin from Typhonium divaricatum (L.) Decne (Araceae) with antiviral activity against HSV-II and antiproliferative effect on human cancer cell lines. BMB Rep 2007;40(3):358—67.

[74] Wang HX, Ng TB. An antifungal peptide from baby lima bean. Appl Microbiol Biotechnol 2006;73:576—81.

[75] Keryer-Bibens C, Pioche-Durieu C, Villemant C, Souquere S, Nishi N, Hirashima M, et al. Exosomes released by EBV-infected nasopharyngeal carcinoma cells convey the viral latent membrane protein 1 and the immunomodulatory protein galectin-9. BMC Cancer 2006; 6:1—8.

[76] Islam MA, Hossain M, Khanam A, Asaduzzaman AKM, Hasan I. Carbohydrate-Binding Properties and Antimi crobial and Antitumor Potential of a New Lectin from the Phloem Sap of Cucurbita pepo. Molecules 2024;29(11):2531.

[77] Ng TB, Lam SK, Fong WP. A homodimeric sporamin-type trypsin inhibitor with antiproliferative, HIV reverse tran scriptase-inhibitory and antifungal activities from wampee (Clausena lansium) seeds. Biol Chem 2003;384(2):289—93.

[78] Ogawa T, Watanabe M, Naganuma T, Muramoto K. Diversified carbohydrate-binding lectins from marine re sources. J Amino Acids 2011;2011(1):838914.

[79] Etzler ME, Mohnen D. Essentials of glycobiology. Cold Spring Harbor (NY): Cold Spring Harbor Laboratory Press; 2009.

[80] Sharon N, Lis H. History of lectins: from hemagglutinins to biological recognition molecules. Glycobiology 2004;14(11): 53R—62R.

[81] Pinho SS, Reis CA, Sorensen T, et al. Immune regulatory networks coordinated by glycans and glycan-binding proteins in infection and inflammation. Nat Rev Immunol 2023;23(12):824—44.

[82] Gir~ao DKFB, Cavada BS, de Freitas Pires A, Martins TV, Franco AX, Morais CM, et al. The galactose-binding lectin isolated from Bauhinia bauhinioides Mart seeds inhibits neutrophil rolling and adhesion via primary cytokines. J Mol Recogn 2015;28(5):285—92.

[83] de Oliveira Silva F, das Neves Santos P, de Melo CML, Teixeira EH, de Sousa Cavada B, Pereira VAR, et al. Immunostimulatory activity of ConBr: a focus on spleno cyte proliferation and proliferative cytokine secretion. Cell Tissue Res 2011;346:237—44.

[84] da N obrega RB, Rocha BAM, Gadelha CAA, Santi Gadelha T, Pires AF, Assreuy AMS, et al. Structure of Dioclea virgata lectin: relations between carbohydrate binding site and nitric oxide production. Biochimie 2012; 94(3):900—6.

[85] Coelho LCBB, Silva PMS, Lima VLM, Pontual EV, Paiva PMG, Napole~ao TH, et al. Lectins, interconnecting proteins with biotechnological/pharmacological and ther apeutic applications. Evid Based Complement Alternat Med 2017;2017(1):1594074.

[86] Proc opio TF, de Siqueira Patriota LL, da Silva Barros BR, de Souza Aguiar LM, de Lorena VMB, Paiva PMG, et al. Calliandra surinamensis lectin (CasuL) does not impair the functionality of mice splenocytes, promoting cell signaling and cytokine production. Biomed Pharmacother 2018;107: 650—5.

[87] Breitenbach Barroso Coelho LC, Marcelino dos Santos Silva P, Felix de Oliveira W, de Moura MC, Viana Pontual E, Soares Gomes F, et al. Lectins as antimicrobial agents. J Appl Microbiol 2018;125(5):1238—52.

[88] Regente M, Taveira GB, Pinedo M, Elizalde MM, Ticchi AJ, Diz MSS, et al. A sunflower lectin with antifungal prop erties and putative medical mycology applications. Curr Microbiol 2014;69:88—95.

[89] Ang ASW, Cheung RCF, Dan X, Chan YS, Pan W, Ng TB. Purification and characterization of a glucosamine-binding antifungal lectin from Phaseolus vulgaris cv. Chinese pinto beans with antiproliferative activity towards nasopharyn geal carcinoma cells. Appl Biochem Biotechnol 2014;172: 672—86.

[90] Couti~no-Rodríguez R, Hernandez-Cruz P, Giles-Ríos H. Lectins in fruits having gastrointestinal activity: their participation in the hemagglutinating property of Escher ichia coli O157:H7. Arch Med Res 2001;32(4):251—7.

[91] Awoyinka OA, Olajuyigbe OO, Anyasor GN, Osamika O, Adeniyi M. Interaction of lectins isolated from four selected local vegetables on gastrointestinal pathogenic bacteria International Journal of Plant Research 2013;3(5): 67—72.

[92] Raval JS, Jani K, Thaker VS. Genome-wide identification and expression analysis of lectin genes reveals their role in plant defense. Physiol Mol Plant Pathol 2023;124: 102086.

[93] Chatterjee A, Ratner DM, Ryan CM, Johnson PJ, O'Keefe BR, Secor WE, et al. Anti-retroviral lectins have modest effects on adherence of Trichomonas vaginalis to epithelial cells in vitro and on recovery of Tritrichomonas foetus in a mouse vaginal model. PLoS One 2015;10(8): e0135340.

[94] Singh K, Rup PJ, Saxena AK, Khan RH, Ashraf MT, Kamboj SS, et al. A tuber lectin from Arisaema hellebor ifolium Schott with anti-insect activity against melon fruit f ly, Bactrocera cucurbitae (Coquillett), and anti-cancer effect on human cancer cell lines. Arch Biochem Biophys 2006; 445(1):156—65.

[95] Sitohy M, Doheim M, Badr H. Isolation and characteriza tion of a lectin with antifungal activity from Egyptian Pisum sativum seeds. Food Chem 2007;104(3):971—9.

[96] Li YR, Liu QH, Wang HX, Ng TB. A novel lectin with potent antitumor, mitogenic and HIV-1 reverse transcrip tase inhibitory activities from the edible mushroom Pleu rotus citrinopileatus. Biochim Biophys Acta Gen Subj 2008; 1780(1):51—7.

[97] Takahashi KG, Kuroda T, Muroga K. Purification and antibacterial characterization of a novel isoform of the Manila clam lectin (MCL-4) from the plasma of the Manila clam, Ruditapes philippinarum. Comp Biochem Physiol B Biochem Mol Biol 2008;150(1):45—52.

[98] da Silva LCN, Alves NMP, de Castro MCAB, Pereira VRA, da Paz NVN, Coelho LCBB, et al. Immunomodulatory ef fects of pCramoll and rCramoll on peritoneal exudate cells infected and non-infected with Staphylococcus aureus. Int J Biol Macromol 2015;72:848—54.

[99] Brustein VP, Souza-Araújo FV, Vaz AFM, Araújo RVS, Paiva PMG, Coelho L, et al. A novel antimicrobial lectin from Eugenia malaccensis that stimulates cutaneous heal ing in a mice model. Inflammopharmacology 2012;20: 315—22.

[100] Alencar NMN, Oliveira RSB, Figueiredo JG, Cavalcante IJM, Matos MPV, Cunha FQ, et al. An anti-in f lammatory lectin from Luetzelburgia auriculata seeds in hibits adhesion and rolling of leukocytes and modulates histamine and PGE2 action in acute inflammation models. Inflamm Res 2010;59:245—54.

[101] Leite JFM, Assreuy AMS, Mota MRL, Bringel PH, de SF, e Lacerda RR, Gomes V de M, et al. Antinociceptive and anti-inflammatory effects of a lectin-like substance from Clitoria fairchildiana R. Howard seeds. Molecules 2012;17(3): 3277e90. MA'AEN JOURNAL FOR MEDICAL SCIENCES 2025;4:221—239 237

[102] e Lacerda RR, Moreira IC, do Nascimento JSJ, de Lacerda ACS, Cabral NL, Lucetti DL, et al. Lectin isolated from Brazilian seeds of velvet bean (Mucuna pruriens (L) DC.) presents analgesic, anti-inflammatory and anti hemolytic action. J Med Plants Res 2015;9(8):231e42.

[103] Araújo LCC, Aguiar JS, Napole~ao TH, Mota FVB, Barros ALS, Moura MC, et al. Evaluation of cytotoxic and anti-inflammatory activities of extracts and lectins from Moringa oleifera seeds. PLoS One 2013;8(12):e81973.

[104] Shivamadhu MC, Srinivas BK, Jayarama S, Chandrashekaraiah SA. Anti-cancer and anti-angiogenic effects of partially purified lectin from Praecitrullus fistu losus fruit on in vitro and in vivo model. Biomed Phar macother 2017;96:1299e309.

[105] Jiang Q, Zhang S, Tian M, Zhang S, Xie T, Chen D, et al. Plant lectins, from ancient sugar-binding proteins to emerging anti-cancer drugs in apoptosis and autophagy. Cell Prolif 2015;48(1):17e28.

[106] Bhutia SK, Behera B, Nandini Das D, Mukhopadhyay S, Sinha N, Panda PK, et al. Abrus agglutinin is a potent anti proliferative and anti-angiogenic agent in human breast cancer. Int J Cancer 2016;139(2):457e66.

[107] Samarasinghe I, Chalmers K, McMillan A, et al. Dietary plant lectins modulate gut epithelial function and micro biota composition in vivo: evidence from rat feeding studies. Nutrients 2023;15(14):3165.

[108] Kocyigit E, Saygi S, Tuzen S, Soylak M. Plant toxic proteins: Their biological activities, mechanism and health risks. Toxins (Basel) 2023;15(6):356.

[109] Adamcova A, Lacanin I, Smolkova B, et al. Lectin activity in commonly consumed plant-based foods. Nutrients 2021; 13(11):4004

[110] Wang W,Sindrewicz-G oral P, Chen C, Yu LG. Appearance of peanut agglutinin in the blood circulation after peanut ingestion promotes endothelial secretion of metastasis promoting cytokines. Carcinogenesis 2021;35(12):2815—24.

[111] Bardocz S, Grant G, Ewen SWB, Duguid TJ, Brown DS, Pusztai A. Reversible effect of phytohaemagglutinin on the growth and metabolism of rat gastrointestinal tract. Gut 1995;37(3):353—60.

[112] Linderoth A, Prykhod’ko O, Ahren B, Fåk F, Pierzynowski SG, Westr€ om BR. Binding and the effect of the red kidney bean lectin, phytohaemagglutinin, in the gastrointestinal tract of suckling rats. Br J Nutr 2006;95(1): 105—15.

[113] Miljkovic R, Dobrica E, Perisic P, et al. Recombinant ba nana lectin (rBanLec) modulates immune responses in colitis and enhances mucosal healing. Nutrients 2024; 16(11):1705.

[114] Simha AN, Shrikhande N, Sajja S, et al. From sugar binders to diabetes fighters: the lectin saga of carbohydrate recognition in metabolic regulation. Front Pharmacol 2024; 15:1382876.

[115] de Sousa FD, Vasconselos PD, da Silva AFB, Mota EF, da Rocha Tome A, da Silva Mendes FR, et al. Hydrogel and membrane scaffold formulations of Frutalin (breadfruit lectin) within a polysaccharide galactomannan matrix have potential for wound healing. Int J Biol Macromol 2019;121: 429e42

. [116] Albuquerque PBS, Soares PAG, Arag~ao-Neto AC, Albuquerque GS, Silva LCN, Lima-Ribeiro MHM, et al. Healing activity evaluation of the galactomannan film obtained from Cassia grandis seeds with immobilized Cratylia mollis seed lectin. Int J Biol Macromol 2017;102: 749e57.

[117] Silva MCC, de Paula CAA, Ferreira JG, Paredes Gamero EJ, Vaz AMSF, Sampaio MU, et al. Bauhinia for f icata lectin (BfL) induces cell death and inhibits integrin mediated adhesion on MCF7 human breast cancer cells. Biochim Biophys Acta Gen Subj 2014;1840(7):2262e71.

[118] Silva MCC, Santana LA, Mentele R, Ferreira RS, de Miranda A, Silva-Lucca RA, et al. Purification, primary structure and potential functions of a novel lectin from Bauhinia forficata seeds. Process Biochem 2012;47(7): 1049e59.

[119] Singha B, Adhya M, Chatterjee BP. Multivalent II [β-D Galp-(1→4)-β-D-GlcNAc] and Tα [β-D-Galp-(1→3)-α-D GalNAc] specific Moraceae family plant lectin from the seeds of Ficus bengalensis fruits. Carbohydr Res 2007;342(8): 1034e43.

[120] Santos AFS, Luz LA, Argolo ACC, Teixeira JA, Paiva PMG, Coelho LCBB. Isolation of a seed coagulant Moringa oleifera lectin. Process Biochem 2009;44(4):504e8.

[121] Vaz AFM, Costa RMPB, Melo AMMA, Oliva MLV, Santana LA, Silva-Lucca RA, et al. Biocontrol of Fusarium species by a novel lectin with low ecotoxicity isolated from Sebastiania jacobinensis. Food Chem 2010;119(4):1507e13.

[122] Pinheiro AC, Bourbon AI, Medeiros BG de S, da Silva LHM, da Silva MCH, Carneiro-da-Cunha MG, et al. Interactions between κ-carrageenan and chitosan in nanolayered coatings―structural and transport properties. Carbohydr Polym 2012;87(2):1081e90.

[123] Souza JD, Silva MBR, Argolo ACC, Napole~ao TH, Sa RA, Correia MTS, et al. A new Bauhinia monandra galactose specific lectin purified in milligram quantities from sec ondary roots with antifungal and termiticidal activities. Int Biodeterior Biodegrad 2011;65(5):696e702.

[124] Peng H, Lv H, Wang Y, Liu YH, Li CY, Meng L, et al. Clematis montana lectin, a novel mannose-binding lectin from traditional Chinese medicine with antiviral and apoptosis-inducing activities. Peptides 2009;30(10):1805e15.

[125] Costa RMPB, Vaz AFM, Oliva MLV, Coelho LCBB, Correia MTS, Carneiro-da-Cunha MG. A new mistletoe Phthirusa pyrifolia leaf lectin with antimicrobial properties. Process Biochem 2010;45(4):526e33.

[126] Wang H, Ng TB. Natural plant proteins with antiviral ac tivities: prospects for pharmacological development. Phy tomedicine 2023;114:154772.

[127] Wang H, Ng TB. A lectin with some unique characteristics from the samta tomato. Plant Physiol Biochem 2006;44(4): 181e5.

[128] Parisi MG, Moreno S, Fernandez G. Isolation and charac terization of a dual function protein from Allium sativum bulbs which exhibits proteolytic and hemagglutinating activities. Plant Physiol Biochem 2008;46(4):403e13.

[129] Shao B, Wang S, Zhou J, Ke L, Rao P. A novel lectin from fresh rhizome of Alisma orientale (Sam.) Juzep. Process Biochem 2011;46(8):1554e9.

[130] Yao Q, Wu C, Luo P, Xiang X, Liu J, Mou L, et al. A new chitin-binding lectin from rhizome of Setcreasea purpurea with antifungal, antiviral and apoptosis-inducing activities. Process Biochem 2010;45(9):1477e85.

[131] Chu KT, Ng TB. Smilaxin, a novel protein with immunos timulatory, antiproliferative, and HIV-1 reverse transcrip tase inhibitory activities from fresh Smilax glabra rhizomes. Biochem Biophys Res Commun 2006;340(1):118e24.

[132] Kaur A, Singh J, Kamboj SS, Saxena AK, Pandita RM, Shamnugavel M. Isolation of an N-acetyl-D-glucosamine specific lectin from the rhizomes of Arundo donax with antiproliferative activity. Phytochemistry 2005;66(16): 1933e40.

[133] Chettri D, Boro M, Sarkar L, Verma AK. Lectins: Biological significance to biotechnological application. Carbohydr Res 2021 Aug 1;506:108367.

[134] Naisbett B, Woodley J. The potential use of tomato lectin for oral drug delivery. 1. Lectin binding to rat small in testine in vitro. Int J Pharm 1994;107(3):223e30.

[135] Cai Q, Zhang ZR. Lectin-mediated cytotoxicity and speci f icity of 5-fluorouracil conjugated with peanut agglutinin (5-Fu-PNA) in vitro. J Drug Target 2005;13(4):251e7.

[136] Nicholls TJ, Cook DJ, Rogers DJ, Green KL, Smart JD. Lectins in ocular drug delivery. An in vivo study of lectin retention on ocular surfaces. Pharm Pharmacol Commun 1997;3(2):77e81.

[137] Qaddoumi M, Lee VH. Lectins as endocytic ligands: an assessment of lectin binding and uptake to rabbit 238 MA'AEN JOURNAL FOR MEDICAL SCIENCES 2025;4:221—239 conjunctival epithelial cells. Pharmaceutical research 2004; 21(7):1160—6.

[138] Chahud F, Ramalho LN, Ramalho FS, Haddad A, Roque Barreira MC. The lectin KM+ induces corneal epithelial wound healing in rabbits. Int J Exp Pathol 2009;90(2): 166—73.

[139] Liu Y, Wang P, Sun C, Zhao J, Du Y, Shi F, et al. Bio adhesion and enhanced bioavailability by wheat germ agglutinin-grafted lipid nanoparticles for oral delivery of poorly water-soluble drug bufalin. Int J Pharm 2011; 419(1—2):260e5.

[140] Ratanapo S, Ngamjunyaporn W, Chulavatnatol M. Inter action of a mulberry leaf lectin with a phytopathogenic bacterium, P. syringae pv mori. Plant Sci 2001;160(4):739e44.

[141] Carcea M, Melloni S, Narducci V, Turfani V. Wheat germ agglutinin (WGA): its nature, biological role, significance in human nutrition, and use as a whole-grain mar ker―implications for bacterial cell wall binding. Foods 2024;13(18):2990.

[142] Tintu I, Abhilash J, Dileep KV, Augustine A, Haridas M, Sadasivan C. A lectin from Spatholobus parviflorus inhibits Aspergillus flavus α-amylase: enzyme kinetics and ther modynamic studies. Chem Biol Drug Des 2014;84(1): 116—22.

[143] Jandú JJB, Moraes Neto RN, Zagmignan A, de Sousa EM, Brelaz-de-Castro MCA, dos Santos Correia MT, et al. Targeting the immune system with plant lectins to combat microbial infections. Front Pharmacol 2017;8:285566.

144] Jacobson RL, Schlein Y. Lectins and toxins in the plant diet of Phlebotomus papatasi (Diptera: Psychodidae) can kill Leishmania major promastigotes in the sandfly and in cul ture. Ann Trop Med Parasitol 1999;93(4):351e6.

[145] Upadhyay RK. Kareel plant: a natural source of medicines and nutrients. Int J Green Pharm 2011;5(4):255—65.

[146] Saleem M, Nazir M, Ali MS, Hussain H, Lee YS, Riaz N, et al. Antimicrobial natural products: an update on future antibiotic drug candidates. Nat Prod Rep 2010;27(2):238e54.

[147] Chahlia N. Effect of Capparis decidua on hypolipidemic activity in rats. J Med Plants Res 2009;3(6):481e4.

[148] Nabavi SF, Maggi F, Daglia M, Habtemariam S, Rastrelli L, Nabavi SM. Pharmacological effects of Capparis spinosa L. Phytother Res 2016;30(11):1733e44.

[149] Upadhyay RK. Insecticidal properties of kareel plant (Capparis decidua: Capparidaceae) a desert shrub: a review. World J Zool 2013;8(1):75e93.

[150] Ng TB, Lam SK, Cheung RCF, Wong JH, Wang HX, Ngai PHK, et al. Therapeutic use of caper (Capparis spinosa) seeds. In: Nuts and seeds in health and disease prevention. Elsevier; 2011. 279e84.

[151] Allam NG, Hefnawy MA, Aldamanhoury MA. Antibacte rial activity of six Egyptian medicinal plants against some pathogenic bacteria. Egypt J Exp Biol 2015;11:71e5.

[152] Abu Hiameda I, Noubarki A, Abunakaa M. Antidiabetic and immunomodulatory effects of Moringa oleifera leaf lectin in streptozotocin-induced J Ethnopharmacol 2023;305:116111. diabetic rats. [153] Olmez Z, Gokturk A, Gulcu S. Effects of cold stratification on germination rate and percentage of caper (Capparis ovata Desf.) seeds. J Environ Biol 2006;27(4):667e70. [154] Eddouks M, Lemhadri A, Michel JB. Caraway and caper: potential anti-hyperglycaemic plants in diabetic rats. J Ethnopharmacol 2004;94(1):143e8.

[155] Eddouks M, Lemhadri A, Michel JB. Hypolipidemic activ ity of aqueous extract of Capparis spinosa L. in normal and diabetic rats. J Ethnopharmacol 2005;98(3):345e50.

[156] Arena A, Bisignano G, Pavone B, Tomaino A, Bonina FP, Saija A, et al. Antiviral and immunomodulatory effect of a lyophilized extract of Capparis spinosa L. buds. Phytother Res 2008;22(3):313e7.

[157] Mahasneh AM. Screening of some indigenous Qatari me dicinal plants for antimicrobial activity. Phytother Res 2002;16(8):751e3.

[158] Ali-Shtayeh MS, Abu Ghdeib SI. Antifungal activity of plant extracts against dermatophytes. Mycoses 1999; 42(11—12):665e72.

[159] Trombetta D, Occhiuto F, Perri D, Puglia C, Santagati NA, De Pasquale A, et al. Antiallergic and antihistaminic effect of two extracts of Capparis spinosa L. flowering buds. Phytother Res 2005;19(1):29e33.

[160] Panico AM, Cardile V, Garufi F, Puglia C, Bonina F, Ronsisvalle G. Protective effect of Capparis spinosa on chondrocytes. Life Sci 2005;77(20):2479e88.

[161] Cao YL, Li X, Zheng M. Effect of Capparis spinosa on f ibroblast proliferation and type I collagen production in progressive systemic sclerosis. Zhongguo Zhongyao Zazhi 2008;33(5):560e3.

[162] Daoudi A, Aarab L, Abdel-Sattar E. Screening of immu nomodulatory activity of total and protein extracts of some Moroccan medicinal plants. Toxicol Ind Health 2013;29(3): 245e53.

[163] Al-Daraji MNJ. A study of the inhibitory effect of the caper, Capparis spinosa L., aqueous crude leaf extract on the Hep 2 and HeLa cancer cell lines. Iraqi J Desert Stud 2010;2(1): 67—73.

[164] Wongkham S, Boonsiri P, Trisonth C, Simasathainsophon S, Wongkham C, Atisoor K. Studies on lectins from Thai plants. J Sci Soc Thail 1995;21:27e36.

[165] Luecha P, Umehara K, Miyase T, Noguchi H. Anti estrogenic constituents of the Thai medicinal plants Cap paris flavicans and Vitex glabrata. J Nat Prod 2009;72(11): 1954e9.

[166] Tlili N, Elfalleh W, Saadaoui E, Khaldi A, Triki S, Nasri N. The caper (Capparis L.): ethnopharmacology, phytochem ical and pharmacological properties. Fitoterapia 2011;82(2): 93e101.

[167] Al-Snafi AE. Therapeutic properties of medicinal plants: a review of their detoxification capacity and protective ef fects (part 1). Asian J Pharm Sci Technol 2015;5(4):257e70.

[168] Alipour F, Nabigol A, Nabizadeh E. A review of the ther apeutic and preventive effects of Capparis. RJMS 2022; 28(12):299—308.

[169] Jiang HE, Li X, Ferguson DK, Wang YF, Liu CJ, Li CS. The discovery of Capparis spinosa L. (Capparidaceae) in the Yanghai Tombs (2800 years BP), NW China, and its medicinal implications. J Ethnopharmacol 2007;113(3): 409e20.

[170] Jacobson RL, Schlein Y. Phlebotomus papatasi and Leish mania major parasites express α-amylase and α-glucosi dase. Acta Trop 2001;78(1):41e9.

[171] Abdel-Sattar E, Maes L, Salama MM. In vitro activities of plant extracts from Saudi Arabia against malaria, leish maniasis, sleeping sickness and Chagas disease. Phytother Res 2010;24(9):1322e8.

[172] Ghule BV, Murugananthan G, Nakhat PD, Yeole PG. Immunostimulant effects of Capparis zeylanica Linn. leaves. J Ethnopharmacol 2006;108(2):311e5.

[173] Camacho MDR, Phillipson JD, Croft SL, Solis PN, Marshall SJ, Ghazanfar SA. Screening of plant extracts for antiprotozoal and cytotoxic activities. J Ethnopharmacol 2003;89(2—3):185e91.

[174] Clarkson C, Maharaj VJ, Crouch NR, Grace OM, Pillay P, Matsabisa MG, et al. In vitro antiplasmodial activity of medicinal plants native to or naturalised in South Africa. J Ethnopharmacol 2004;92(2—3):177e91.

[175] Sun Y, Yang T, Wang C. Capparis spinosa L. as a potential source of nutrition and its health benefits in foods: A comprehensive review of its phytochemistry, bioactivities, safety, and application. Food Chem 2023 May 30;409: 135258.

[176] Venkataswamy M, Karunakaran RS, Islam MS, Meriga B. Capparis zeylanica L. root extract promotes apoptosis and cell cycle arrest, inhibits epithelial-to-mesenchymal tran sition and triggers E-cadherin expression in breast cancer cell lines. 3 Biotech 2023 Feb;13(2):41. MA'AEN JOURNAL FOR MEDICAL SCIENCES 2025;4:221—239 239

[177] Khandare NA. Medico-ethno botany and HPLC analysis of Capparis zeylanica Linn. from Western Melghat Region Amravati.(MS) India. IJIRT 2022;8(10):598—601.

[178] Alexandre KB, Gray ES, Pantophlet R, Moore PL, McMahon JB, Chakauya E, Chikwamba R, Morris L, LynnK,Mlisana K,Williamson C. Binding of the mannose specific lectin, Griffithsin, to HIV-1 gp120 exposes the CD4-binding site and enhances binding of CD4 and neutralizing antibodies. Virology 2011;423(2):175—86.

[179] Mazalovska M, Kouokam J. Plant-derived lectins as po tential cancer therapeutics and diagnostic tools. BioMed Res Int 2020;2020:1631394.

[180] Singh R, Nawale L, Sarkar D, Suresh C. Two chitotriose specific lectins show anti-angiogenesis, induces caspase-9 mediated apoptosis and early arrest of pancreatic tumor cell cycle. PLoS One 2016 Jan 21;11(1):e0146110.

[181] Konozy EH, Osman ME. From inflammation to immune regulation: The dual nature of dietary lectins in health and disease. Heliyon 2024;10(20):e39471.

[182] Souza MA, Carvalho FC, Ruas LP, Ricci-Azevedo R, Roque-Barreira MC. The immunomodulatory effect of plant lectins: a review with emphasis on ArtinM proper ties. Glycoconj J 2013;30(7):641—57.

[183] Simha NA, Patil SM, MK J, N C, Wong LS, Kijsomporn J, Raj R, RamuR.Fromsugar binders to diabetes fighters: the lectin saga ofantihyperglycemicactivitythroughsystematic reviewandmeta-analysis.FrontPharmacol2024;15:1382876.

[184] de Alencar Alves MF, de Almeida Barreto FK, de Vasconcelos MA, do Nascimento Neto LG, Carneiro RF, da Silva LT, Nagano CS, Sampaio AH, Teixeira EH. Anti hyperglycemic and antioxidant activities of a lectin from the marine red algae, Bryothamnion seaforthii, in rats with streptozotocin-induced diabetes. Int J Biol Macromol 2020 Sep 1;158:773—80.

[185] Al-Khafagi MFJ, Mohammed DY. Study antibacterial ac tivity of crude Capparis spinosa L. extracts against Heli cobacter pylori infection and determine their bioactive compounds. Iraqi J Sci 2023;64(2):503—12.

[186] Ma Y, Feng K, Wang J, Jia H, Xia L, Li J. Targeted discovery of multi-action bioactive compounds from Capparis spinosa L. for mitigating diabetic cardiomyopathy. Ind Crops Prod 2025;229:121001.

[187] Alsharif B, Hante N, Govoni B, Verli H, Kukula-Koch W, Santos-Martinez MJ, Boylan F. Capparis cartilaginea Decne (Capparaceae): isolation of flavonoids by high-speed countercurrent chromatography and their anti-inflamma tory evaluation. Front Pharmacol 2023;14:1285243.

[188] Venkataswamy M, Karunakaran RS, Islam MS, Meriga B. Capparis zeylanica L. root extract promotes apoptosis and cell cycle arrest in breast cancer cell lines. 3 Biotech 2023; 13(2):41.

[189] Shahrour WG, Shatnawi MA, Mohammad AA, et al. In vitro multiplication, antimicrobial, and insecticidal activity of Capparis spinosa L. Not Bot Horti Agrobot Cluj-Napoca 2024;52(1):13609.

[190] Van Holle S, De Schutter K, Eggermont L, Tsaneva M, Dang L, Van Damme EJ. Comparative study of lectin do mains in model species: new insights into evolutionary dynamics. Int J Mol Sci 2017;18(6):1136.

[191] Shukla V, George AP, Venkata Marthi RS, Sonawane AP, Parida S, Ramireddy E. Systematic analysis of lectin gene family reveals dynamic modes of paralogue evolution and immune regulatory functions in tomato. bioRxiv 2025: 2025—7.

[192] Barre A, Van Damme EJ, Klonjkowski B, Simplicien M, Sudor J, Benoist H, Rouge P. Legume lectins with different specificities as potential glycan probes for pathogenic enveloped viruses. Cells 2022;11(3):339.

[193] Enoma S, Adewole TS, Agunbiade TO, Kuku A. Antimi crobial activities and phylogenetic study of Erythrina sene galensis DC (Fabaceae) seed lectin. Biotechnologia 2023; 104(1):21.

[194] Nabi-Afjadi M, Heydari M, Zalpoor H, Arman I, Sadoughi A, Sahami P, Aghazadeh S. Lectins and lecti bodies: potential promising antiviral agents. Cell Mol Biol Lett 2022;27(1):37.

[195] Dos Santos AMDO, Duarte AE, Costa AR, et al. Canavalia ensiformis lectin induced oxidative stress mediates both toxicity and genotoxicity in Drosophila melanogaster. Int J Biol Macromol 2022;222:2823e32.

[196] He S, Simpson BK, Sun H, Ngadi MO, Ma Y, Huang T. Phaseolus vulgaris lectins: a systematic review of charac teristics and health implications. Crit Rev Food Sci Nutr 2018;58(1):70e83.

[197] Nazar S, Hussain MA, Khan A, Muhammad G, Tahir MN. Capparis decidua Edgew (Forssk.): a comprehensive review of its traditional uses, phytochemistry, pharmacology and nutrapharmaceutical potential. Arab J Chem 2020;13(1): 1901e16.

[198] Alsharif B, Boylan F, Capparis L. (Capparaceae): a scoping review of phytochemistry, ethnopharmacology and pharmacological activities. Molecules 2025;30(18): 3705.

[199] Mantawy MM, Hamed MA, Sammour EM, Sanad M. In f luence of Capparis spinosa and Acacia arabica on certain biochemical haemolymph parameters of Biomphalaria alexandrina. J Egypt Soc Parasitol 2004;34:659e77.

[200] Bendgude RD, Kondawar MS, Patil SB, Hirave RV. In vitro anthelmintic activity of roots of Capparis zeylanica Linn. J Adv Pharm Educ Res 2011;2:154e8.

[201] Estrada-Martínez LE, Moreno-Celis U, Cervantes Jimenez R, Ferriz-Martínez RA, Blanco-Labra A, Garcia Gasca T. Plant lectins as medical tools against digestive system cancers. Int J Mol Sci 2017;18(7):1403.

[202] Silva MLS. Lectin-modified drug delivery systems — recent applications in oncology. Int J Pharm 2024;665:124685.

[203] Zhang Y, Wang Y, Lu Y, Quan H, Wang Y, Song S, Guo H. Advanced oral drug delivery systems for gastrointestinal targeted delivery: the design principles and foundations. J Nanobiotechnol 2025;23(1):400.

[204] Naisbett B, Woodley J. The potential use of tomato lectin for oral drug delivery: 2. Mechanism of uptake in vitro. Int J Pharm 1994;110(2):127e36.

[205] Zahedi Y, Shaddel R, Salamatian M, Szumny A. Nano liposomal encapsulation of Capparis spinosa extract and its application in jelly formulation. Molecules 2024;29(12): 2804.

[206] Barre A, Bourne Y, Van Damme EJ, Peumans WJ, Rouge P. Mannose-binding plant lectins: different structural scaf folds for a common sugar-recognition process. Biochimie 2001;83(7):645e51.

[207] Vasta GR, Bianchet MA. F-type lectins: structural and functional aspects, and potential biomedical applications. BBA Adv 2025;8:100166

Share

COinS