•  
  •  
 

Abstract

The development of dosage forms necessitates the evaluation of pharmacokinetics and pharmacodynamics (PK/PD), which aids scientists in elucidating the drug's mechanism of action and achieving optimal composite design. The incorporation of pharmacokinetic/pharmacodynamic (PK/PD) efficacy studies in the early phases of lead identification and optimisation within drug development can markedly expedite the selection of the most promising dosage forms. The rapid advancement of computer hardware, software, and algorithms, along with drug screening and PK/PD evaluation, has significantly benefited from various computational methods, which substantially decrease the time and cost associated with drug development. Computational pharmacokinetic/pharmacodynamic modelling enhances the translation of in vitro compound potency to in vivo contexts and minimises the necessity for in vivo animal studies. This review seeks to provide people unfamiliar with the insilico program with a fundamental understanding of its main principles. This review initially examines the significance of insilico software in PK/PD evaluation, covering its history, applications, developers, and the latest version. The second part focusses on the use of GastroPlusTM to illustrate the absorption pathway through pre-formulation data. The input data encompassed a physico-chemical evaluation of the drugs, which included measurements of drug solubility in simulated physiological conditions and the assessment of permeability, with some examples (R1315 - Sertraline - piroxicam).

References

[1] Hosea NA, Jones HM. Predicting pharmacokinetic profiles using in silico derived parameters. Mol Pharm 2013;10(4): 1207e15. https://doi.org/10.1021/mp300482w. 128 MA'AEN JOURNAL FOR MEDICAL SCIENCES 2025;4:114e131

[2] Miller NA, Reddy MB, Heikkinen AT, Lukacova V, Parrott N. Physiologically based pharmacokinetic modelling for firstin-human predictions: an updated model building strategy illustrated with challenging industry case studies. Clin Pharmacokinet 2019;58(6):727e46. https://doi.org/10.1007/ s40262-019-00741-9.

[3] Madden JC, Enoch SJ, Paini A, Cronin MTD. A review of in silico tools as alternatives to animal testing: principles, resources and applications. Altern Lab Anim 2020;48(4): 146e72. https://doi.org/10.1177/0261192920965977.

[4] Shaikh IA, Muddapur UM, Kadeppagari RK, Arifin NS, Dhuli P, Khanam S. In silico molecular docking and simulation studies of protein HBx involved in the pathogenesis of hepatitis B virus-HBV. Molecules 2022;27(5):1513. https:// doi.org/10.3390/molecules27051513. Published 2022 Feb 23.

[5] Ji ZL, Wang Y, Yu L, Han LY, Zheng CJ, Chen YZ. In silico search of putative adverse drug reaction related proteins as a potential tool for facilitating drug adverse effect prediction. Toxicol Lett 2006;164(2):104e12. https://doi.org/10.1016/ j.toxlet.2005.11.017.

[6] Colquitt RB, Colquhoun DA, Thiele RH. In silico modelling of physiologic systems. Best Pract Res Clin Anaesthesiol 2011 Dec 1;25(4):499e510. https://doi.org/10.1016/j.bpa.2011.08.006.

[7] Kalendar R, Khassenov B, Ramankulov Y, Samuilova O, Ivanov KI. FastPCR: an in silico tool for fast primer and probe design and advanced sequence analysis. Genomics 2017; 109(3e4):312e9. https://doi.org/10.1016/j.ygeno.2017.05.005.

[8] Silva DA, Cor MK, Lavasanifar A, Davies N M, Lobenberg R. Using GastroPlus to teach complex biophar- € maceutical concepts. Pharm Educ [Internet] 2022 May 28; 22(1):336e47. https://doi.org/10.46542/pe.2022.221.336347 [cited 2024 Dec. 21].

[9] Calcoen D, Elias L, Yu X. What does it take to produce a breakthrough drug? Nat Rev Drug Discov 2015;14(3):161e2. https://doi.org/10.1038/nrd4570.

[10] Federico MP, Sakata RA, Pinto PF, Furtado GH. Noçoes ~ sobre par^ametros farmacocineticos/farmacodin ^amicos e sua utilizaç~ao na pratica m edica. Revista da Sociedade Brasileira de Clínica Medica 2017 Nov 9;15(3):201 e5.

[11] Clermont G, Bartels J, Kumar R, Constantine G, Vodovotz Y, Chow C. In silico design of clinical trials: a method coming of age. Crit Care Med 2004;32(10):2061e70. https://doi.org/ 10.1097/01.ccm.0000142394.28791.c3.

[12] Mancini T, Mari F, Massini A, Melatti I, Salvo I, Sinisi S, et al. Computing personalised treatments through in silico clinical trials. A case study on downregulation in assisted reproduction. Intell Artif 2018 Aug;9:1e6. https://doi.org/10.29007/ g864.

[13] Lolli M, Narramore S, Fishwick CW, Pors K. Refining the chemical toolbox to be fit for educational and practical purpose for drug discovery in the 21st Century. Drug Discov Today 2015;20(8):1018e26. https://doi.org/10.1016/j.drudis. 2015.04.010.

[14] Balbach S, Korn C. Pharmaceutical evaluation of early development candidates "the 100 mg-approach". Int J Pharm 2004; 275(1e2):1e12. https://doi.org/10.1016/j.ijpharm.2004.01.034.

[15] Shebley M, Sandhu P, Emami Riedmaier A, Jamei M, Narayanan R, Patel A, et al. Physiologically based pharmacokinetic model qualification and reporting procedures for regulatory submissions: a consortium perspective. Clin Pharmacol Ther 2018;104(1):88e110. https://doi.org/10.1002/ cpt.1013.

[16] Gataric B, Parojcic J. Application of data mining approach to identify drug subclasses based on solubility and permeability. Biopharm Drug Dispos 2019 Feb;40(2):51e61.

[17] Shaker B, Ahmad S, Lee J, Jung C, Na D. In silico methods and tools for drug discovery. Comput Biol Med 2021 Oct 1;137: 104851. https://doi.org/10.1016/j.compbiomed.2021.104851. Epub 2021 Sep 8. PMID: 34520990.

[18] Colli LF, Cabral LM, Matos GC, Rodrigues CR, de Sousa VP. Application of in silico methods in clinical research and development of drugs and their formulation: a scoping review. J Appl Pharmaceut Sci 2023 Mar 28;13(4):1e10. https://doi.org/10.7324/JAPS.2023.87792.

[19] Brocks DR, Hamdy DA. Bayesian estimation of pharmacokinetic parameters: an important component to include in the teaching of clinical pharmacokinetics and therapeutic drug monitoring. Res Pharm Sci 2020 Dec 1;15(6): 503e14.

[20] Delgado T, Bhark SJ, Donahue J. Pandemic Teaching: creating and teaching cell biology labs online during COVID-19. Biochem Mol Biol Educ 2021 Jan;49(1):32e7. https://doi.org/10.4103/1735-5362.301335.

[21] Waring MJ, Arrowsmith J, Leach AR, Leeson PD, Mandrell S, Owen RM, et al. An analysis of the attrition of drug candidates from four major pharmaceutical companies. Nat Rev Drug Discov 2015 Jul;14(7):475e86. https://doi.org/10.1038/ nrd4609.

[22] Kuentz M, Nick S, Parrott N, Rothlisberger D. A strategy for € preclinical formulation development using GastroPlus™ as pharmacokinetic simulation tool and a statistical screening design applied to a dog study. Eur J Pharmaceut Sci 2006 Jan 1;27(1):91e9. https://doi.org/10.1016/j.ejps.2005.08.011.

[23] Amidon GL, Lennernas H, Shah VP, Crison JR. A theoretical € basis for a biopharmaceutic drug classification: the correlation of in vitro drug product dissolution and in vivo bioavailability. Pharm Res 1995 Mar;12(3):413e20. https:// doi.org/10.1023/a:1016212804288. PMID: 7617530.

[24] Arora D, Khurana B. Computer-aided biopharmaceutical characterization: gastrointestinal absorption simulation and in silico computational modeling. In: Computer Aided Pharmaceutics and Drug Delivery: An Application Guide for Students and Researchers of Pharmaceutical Sciences; 2022 May 31. p. 189e215. https://doi.org/10.1007/978-981-16-5180- 9_7.

[25] Pelkonen O, Turpeinen M, Raunio H. In vivo-in vitro-in silico pharmacokinetic modelling in drug development: current status and future directions. Clin Pharmacokinet 2011 Aug;50(8):483e91. https://doi.org/10.2165/11592400- 000000000-00000. PMID: 21740072.

[26] Yap BK, Lee CY, Choi SB, Kamarulzaman EE. In silico identification of novel inhibitors. Encyclopedia Bioinform Comput Biol 2019;3:761e79. https://doi.org/10.1016/B978-0- 12-809633-8.20158-1.

[27] Willmann S, Thelen K, Lippert J. Integration of dissolution into physiologically-based pharmacokinetic models III: PKSim®. J Pharm Pharmacol 2012 Jul;64(7):997e1007. https:// doi.org/10.1111/j.2042-7158.2012.01534.x.

[28] Willmann S, Lippert J, Sevestre M, Solodenko J, Fois F, Schmitt W. PK-Sim®: a physiologically based pharmacokinetic ‘whole-body’model. Biosilico 2003 Sep 4;1(4):121e4. https://doi.org/10.1016/S1478-5382(03)02342-4.

[29] Basu S, Lien YTK, Vozmediano V, Schlender JF, Eissing T, Schmidt S, et al. Physiologically based pharmacokinetic modeling of monoclonal antibodies in pediatric populations using PK-Sim. Front Pharmacol 2020 Jun 11;11:868. https:// doi.org/10.3389/fphar.2020.00868. PMID: 32595502; PMCID: PMC7300301.

[30] Cohen-Rabbie S, Zhou L, Vishwanathan K, Wild M, Xu S, Freshwater T, et al. Physiologically based pharmacokinetic modeling for selumetinib to evaluate drug-drug interactions and pediatric dose regimens. J Clin Pharmacol 2021 Nov; 61(11):1493e504. https://doi.org/10.1002/jcph.1935. Epub 2021 Jul 22. PMID: 34196005; PMCID: PMC9290801.

[31] Jamei M, Marciniak S, Edwards D, Wragg K, Feng K, Barnett A, et al. The simcyp population based simulator: architecture, implementation, and quality assurance. Silico Pharmacol 2013 Jun 3;1:9. https://doi.org/10.1186/2193-9616- 1-9. PMID: 25505654; PMCID: PMC4230310.

[32] Yu H, Singh Badhan RK. The pharmacokinetics of gefitinib in a Chinese cancer population group: a virtual clinical trials population study. J Pharm Sci 2021 Oct;110(10):3507e19. https://doi.org/10.1016/j.xphs.2021.05.008. Epub 2021 May 17. PMID: 34015277. MA'AEN JOURNAL FOR MEDICAL SCIENCES 2025;4:114e131 129

[33] Yoon DY, Lee S, Jang IJ, Kim M, Lee H, Kim S, et al. Prediction of drug-drug interaction potential of tegoprazan using physiologically based pharmacokinetic modeling and simulation. Pharmaceutics 2021 Sep 16;13(9):1489. https:// doi.org/10.3390/pharmaceutics13091489. PMID: 34575565; PMCID: PMC8464955.

[34] Bauer RJ. NONMEM tutorial Part I: description of commands and options, with simple examples of population analysis. CPT Pharmacometrics Syst Pharmacol 2019 Aug; 8(8):525e37. https://doi.org/10.1002/psp4.12404. Epub 2019 Jun 13. PMID: 31056834; PMCID: PMC6709426.

[35] Lindbom L, Pihlgren P, Jonsson EN. PsN-Toolkit–a collection of computer intensive statistical methods for non-linear mixed effect modeling using NONMEM. Comput Methods Progr Biomed 2005 Sep;79(3):241e57. https://doi.org/10.1016/ j.cmpb.2005.04.005. Erratum in: Comput Methods Programs Biomed. 2005 Dec;80(3):277. Jonsson, Niclas [corrected to Jonsson, E Niclas]. PMID: 16023764.

[36] Shaik M, Shaik S, Kilari EK. Population pharmacokinetics of gliclazide in normal and diabetic rabbits. Biopharm Drug Dispos 2018 May;39(5):265e74. https://doi.org/10.1002/ bdd.2132. PMID: 29679474.

[37] Fontova P, Colom H, Rigo-Bonnin R, Bestard O, VidalAlabro A, van Merendonk LN, et al. Sustained inhibition of calcineurin activity with a melt-dose once-daily tacrolimus formulation in renal transplant recipients. Clin Pharmacol Ther 2021 Jul;110(1):238e47. https://doi.org/10.1002/cpt.2220. Epub 2021 Mar 25. PMID: 33626199.

[38] Grabowski T, Raczynska-Pawelec A, Starosciak M, Jaroszewski JJ. Correlation of elimination fraction area under the curve with total body clearance. Eur J Drug Metab Pharmacokinet 2016 Feb;41(1):9e18. https://doi.org/10.1007/ s13318-014-0230-9. Epub 2014 Oct 14. PMID: 25312019.

[39] Riva A, Ronchi M, Petrangolini G, Bosisio S, Allegrini P. Improved oral absorption of quercetin from quercetin Phytosome®, a new delivery system based on food grade lecithin. Eur J Drug Metab Pharmacokinet 2019 Apr;44(2): 169e77. https://doi.org/10.1007/s13318-018-0517-3. PMID: 30328058; PMCID: PMC6418071.

[40] Molitoris BA, George AG, Murray PT, Meier D, Reilly ES, Barreto E, et al. A novel fluorescent clinical method to rapidly quantify plasma volume. Cardiorenal Med 2019;9(3): 168e79. https://doi.org/10.1159/000496480. Epub 2019 Mar 7. PMID: 30844821; PMCID: PMC7175413.

[41] Bourne DW. BOOMER, a simulation and modeling program for pharmacokinetic and pharmacodynamic data analysis. Comput Methods Progr Biomed 1989 Jul 1;29(3):191e5. https://doi.org/10.1016/0169-2607(89)90129-6.

[42] Moorkoth S, Prathyusha NS, Manandhar S, Xue Y, Sankhe R, Pai KSR, et al. Antidepressant-like effect of dehydrozingerone from Zingiber officinale by elevating monoamines in brain: in silico and in vivo studies. Pharmacol Rep 2021 Oct; 73(5):1273e86. https://doi.org/10.1007/s43440-021-00252-0. Epub 2021 Jun 28. PMID: 34181212; PMCID: PMC8460585.

[43] Nyberg J, Bazzoli C, Ogungbenro K, Aliev A, Leonov S, Duffull S, et al. Methods and software tools for design evaluation in population pharmacokinetics-pharmacodynamics studies. Br J Clin Pharmacol 2015 Jan;79(1):6e17. https://doi.org/10.1111/bcp.12352. PMID: 24548174; PMCID: PMC4294071.

[44] Zhang Y, Huo M, Zhou J, Xie S. PKSolver: an add-in program for pharmacokinetic and pharmacodynamic data analysis in Microsoft Excel. Comput Methods Progr Biomed 2010 Sep; 99(3):306e14. https://doi.org/10.1016/j.cmpb.2010.01.007. Epub 2010 Feb 21. PMID: 20176408.

[45] Phenphinan S, Chaiyakum A, Subongkot S, Aromdee C, Rotjanapan P, Assanatham M, et al. Doripenem pharmacokinetics in hemodialysis. Infect Dis Clin Pract 2020 Jul 1;28(4): 216e22. https://doi.org/10.1097/IPC.0000000000000855.

[46] Krishna SR, Ramu A, Vidyadhara S, Prameela Rani A. Bioavailability enhancement by floating microballoons of dipyridamole and clopidogrel: in vivo pharmacokinetic study. Intern J Appl Pharmac 2021;13(6):216e20. https:// doi.org/10.22159/ijap.2021v13i6.42316.

[47] Zhang Y, Huo M, Zhou J, Zou A, Li W, Yao C, et al. DDSolver: an add-in program for modeling and comparison of drug dissolution profiles. AAPS J 2010 Sep;12(3):263e71. https://doi.org/10.1208/s12248-010-9185-1. Epub 2010 Apr 6. PMID: 20373062; PMCID: PMC2895453.

[48] Abdul Rasool BK, Mohammed AA, Salem YY. The optimization of a dimenhydrinate transdermal patch formulation based on the quantitative analysis of in vitro release data by DDSolver through skin penetration studies. Sci Pharm 2021; 89:33. https://doi.org/10.3390/scipharm89030033.

[49] Kulpreechanan Narissara, Sorasitthiyanukarn Feuangthit Niyamissara. Evaluation of in vitro release kinetics of Capsaicin-loaded chitosan nanoparticles using DDSolver. Int J Res Pharm Sci [Internet] 2020 Jul. 31;11(3):4555e9 [cited 2024 Dec. 21].

[50] Al-Tabakha MM, Alomar MJ. In vitro dissolution and in silico modeling shortcuts in bioequivalence testing. Pharmaceutics 2020 Jan 4;12(1):45. https://doi.org/10.3390/ pharmaceutics12010045. PMID: 31947944; PMCID: PMC7022479.

[51] Duque MD, Silva DA, Issa MG, Porta V, Lobenberg R, € Ferraz HG. In silico prediction of plasma concentrations of fluconazole capsules with different dissolution profiles and bioequivalence study using population simulation. Pharmceutics 2019 May 5;11(5):215. https://doi.org/10.3390/pharmaceutics11050215. PMID: 31060289; PMCID: PMC6571621.

[52] Gobeau N, Stringer R, De Buck S, Tuntland T, Faller B. Evaluation of the GastroPlus™ advanced compartmental and transit (ACAT) model in early discovery. Pharm Res 2016 Sep;33(9):2126e39. https://doi.org/10.1007/s11095-016- 1951-z. Epub 2016 Jun 8. PMID: 27278908.

[53] Rytkonen J, Ranta V-P, Kokki M, Kokki H, Hautaj € arvi H, € Rinne V, et al. Physiologically based pharmacokinetic modelling of oxycodone drugedrug interactions. Biopharm Drug Dispos 2020;41:72e88. https://doi.org/10.1002/bdd.2215.

[54] Mitra A, Parrott N, Miller N, Lloyd R, Tistaert C, Heimbach T, et al. Prediction of pH-dependent drug-drug interactions for basic drugs using physiologically based biopharmaceutics modeling: industry case studies. J Pharm Sci 2020 Mar;109(3):1380e94. https://doi.org/10.1016/ j.xphs.2019.11.017. Epub 2019 Nov 25. PMID: 31778721.

[55] Kaur N, Thakur PS, Shete G, Gangwal R, Sangamwar AT, Bansal AK. Understanding the oral absorption of irbesartan using biorelevant dissolution testing and PBPK modeling. AAPS PharmSciTech 2020 Mar 9;21(3):102. https://doi.org/ 10.1208/s12249-020-01643-x. PMID: 32152915.

[56] Darakjian LI, Kaddoumi A. Physiologically based pharmacokinetic/pharmacodynamic model for caffeine disposition in pregnancy. Mol Pharm 2019 Mar 4;16(3):1340e9. https:// doi.org/10.1021/acs.molpharmaceut.8b01276. Epub 2019 Feb 11. PMID: 30689395.

[57] Chaudhuri SR, Lukacova V. Simulating delivery of pulmonary (and intranasal) aerosolised drugs. Orally Inhaled Nasal Drug Prod 2010 Nov:26e30.

[58] Le Merdy M, Spires J, Lukacova V, Tan ML, Babiskin A, Xu X, et al. Ocular physiologically based pharmacokinetic modeling for ointment formulations. Pharm Res 2020 Nov 19;37(12):245. https://doi.org/10.1007/s11095-020-02965-y. PMID: 33215336; PMCID: PMC7677276.

[59] Jagdale P, Sepp A, Shah DK. Physiologically-based pharmacokinetic model for pulmonary disposition of protein therapeutics in humans. J Pharmacokinet Pharmacodyn 2022 Dec;49(6):607e24. https://doi.org/10.1007/s10928-022-09824- w. Epub 2022 Oct 20. PMID: 36266517; PMCID: PMC9589728.

[60] Mahdi WA, Hussain A, Altamimi MA, Alshehri S, Bukhari SI, Ahsan MN. Experimental solubility, thermodynamic/computational validations, and GastroPlus-based in silico prediction for subcutaneous delivery of rifampicin. AAPS PharmSciTech 2021 Mar 24;22(3):116. https://doi.org/ 10.1208/s12249-021-01987-y. PMID: 33763801. 130 MA'AEN JOURNAL FOR MEDICAL SCIENCES 2025;4:114e131

[61] Li Z, He X. Physiologically based in vitro models to predict the oral dissolution and absorption of a solid drug delivery system. Curr Drug Metabol 2015;16(9):777e806. https:// doi.org/10.2174/1389200216666150812123836. PMID: 26264200.

[62] Jereb R, Opara J, Bajc A, Petek B. Evaluating the impact of physiological properties of the gastrointestinal tract on drug in vivo performance using physiologically based biopharmaceutics modeling and virtual clinical trials. J Pharm Sci 2021 Aug;110(8):3069e81. https://doi.org/10.1016/ j.xphs.2021.04.007. Epub 2021 Apr 18. PMID: 33878322.

[63] Gleason BL, Peeters MJ, Resman-Targoff BH, Karr S, McBane S, Kelley K, et al. An active-learning strategies primer for achieving ability-based educational outcomes. Am J Pharmaceut Educ 2011 Nov 10;75(9):186. https:// doi.org/10.5688/ajpe759186. PMID: 22171114; PMCID: PMC3230347.

[64] Lucas KH, Testman JA, Hoyland MN, Kimble AM, Euler ML. Correlation between active-learning coursework and student retention of core content during advanced pharmacy practice experiences. Am J Pharmaceut Educ 2013 Oct 14;77(8):171. https://doi.org/10.5688/ajpe778171. PMID: 24159212; PMCID: PMC3806955.

[65] Tatachar A, Li F, Gibson CM, Kominski C. Pharmacy students' perception of learning and satisfaction with various active learning exercises. Currents Pharm Teach Learn 2016 Jul 1;8(4):577e83. https://doi.org/10.1016/j.cptl.2016.03.019.

[66] Bzowyckyj AS, Blake E, Crabtree B, Edwards KL, Franks AM, Gonyeau M, et al. Advancing pharmacy education and workforce development amid the COVID-19 pandemic: report of the 2020-2021 AACP academic affairs committee. Am J Pharmaceut Educ 2021 Nov;85(10):8716. https://doi.org/ 10.5688/ajpe8716. Epub 2021 Jul 22. PMID: 34301580; PMCID: PMC8715966.

[67] Rebeka J, Jerneja O, Igor L, Bostjan P, Aleksander B, Simon Z, et al. PBPK absorption modeling of food effect and bioequivalence in fed state for two formulations with crystalline and amorphous forms of BCS 2 class drug in generic drug development. AAPS PharmSciTech 2019 Jan 8;20(2):59. https://doi.org/10.1208/s12249-018-1285-8. PMID: 30623248.

[68] Tsume Y, Amidon GL. The biowaiver extension for BCS class III drugs: the effect of dissolution rate on the bioequivalence of BCS class III immediate-release drugs predicted by computer simulation. Mol Pharm 2010 Aug 2;7(4):1235e43. https://doi.org/10.1021/mp100053q. PMID: 20557130.

[69] Kuemmel C, Yang Y, Zhang X, Florian J, Zhu H, Tegenge M, et al. Consideration of a credibility assessment framework in model-informed drug development: potential application to physiologically-based pharmacokinetic modeling and simulation. CPT Pharmacometrics Syst Pharmacol 2020 Jan;9(1): 21e8. https://doi.org/10.1002/psp4.12479. Epub 2019 Nov 10. PMID: 31652029; PMCID: PMC6966181.

[70] Kuhn B, Guba W, Hert J, Banner D, Bissantz C, Ceccarelli S, et al. A real-world perspective on molecular design. J Med Chem 2016 May 12;59(9):4087e102. https://doi.org/10.1021/ acs.jmedchem.5b01875. Epub 2016 Feb 24. PMID: 26878596.

[71] Kuentz M, Rothlisberger D, Richter W. Design of experiment € (DOE) methods maximize information from a minimal number of animals in special cases of preclinical bioavailability testing. Pharmaceut Dev Technol 2003;8(4):453e8. https://doi.org/10.1081/pdt-120024698. PMID: 14601969.

[72] Kuentz M, Nick S, Parrott N, Rothlisberger D. A strategy for € preclinical formulation development using GastroPlus as pharmacokinetic simulation tool and a statistical screening design applied to a dog study. Eur J Pharmaceut Sci 2006 Jan; 27(1):91e9. https://doi.org/10.1016/j.ejps.2005.08.011. Epub 2005 Oct 10. PMID: 16219449.

[73] Balbach S, Korn C. Pharmaceutical evaluation of early development candidates "the 100 mg-approach". Int J Pharm 2004 May 4;275(1e2):1e12. https://doi.org/10.1016/j.ijpharm. 2004.01.034. PMID: 15081133.

[74] Dannenfelser RM, He H, Joshi Y, Bateman S, Serajuddin AT. Development of clinical dosage forms for a poorly water soluble drug I: application of polyethylene glycol-polysorbate 80 solid dispersion carrier system. J Pharm Sci 2004 May;93(5):1165e75. https://doi.org/10.1002/jps.20044. PMID: 15067693.

[75] Romero RM, Bolger MB, Morningstar-Kywi N, Haworth IS. Teaching of biopharmaceutics in a drug design course: use of GastroPlus as educational software. J Chem Educ 2020 Jul 20; 97(8):2212e20. https://doi.org/10.1021/acs.jchemed.0c00401. [76] Obach RS, Cox LM, Tremaine LM. Sertraline is metabolized by multiple cytochrome P450 enzymes, monoamine oxidases, and glucuronyl transferases in human: an in vitro study. Drug Metab Dispos 2005 Feb;33(2):262e70. https:// doi.org/10.1124/dmd.104.002428. Epub 2004 Nov 16. PMID: 15547048.

[77] Brocks DR, Hamdy DA. Bayesian estimation of pharmacokinetic parameters: an important component to include in the teaching of clinical pharmacokinetics and therapeutic drug monitoring. Res Pharm Sci 2020 Nov 27;15(6):503e14. https://doi.org/10.4103/1735-5362.301335. PMID: 33828594; PMCID: PMC8020855

Share

COinS