Silver nanoparticles (AgNPs) are an important product from the nanotechnology field, they have gained interest due to their distinctive physicochemical properties includes; good electrical resistance, thermal and chemical stability that largely have been influenced by size, shape, surface properties and composition of AgNPs. Additionally, AgNPs have well-known biological activity, including antimicrobial, antioxidant, anticancer, and anti-inflammation properties and are also used in biomedical devices. Recently, AgNPs have emerged as a potential drug delivery carriers, particulary for enhancing the efficacy of cancer therapeutics. The objective of this narrative review is to compare of various AgNPs preparation methods, with focus on up-to-date approaches. The properties and characterization methods of AgNPs are briefly discussed. The anticancer role of AgNPs both, as individual nanoparticles or as carriers, is summarized. Furthermore, the proper functionalization of silver surface to carry various anticancer agents to enhance their efficacy is reported.


[1] Runowski M. Nanotechnologyenanomaterials, nanoparticles and multifunctional core/shell type nanostructures. Chem 2014;68(9):766-75. https://api.semanticscholar.org/ CorpusID:32855910.

[2] Khan I, Saeed K, Khan I. Nanoparticles: Properties, applications and toxicities. Arab J Chem 2019;12:908-31. https:// doi.org/10.1016/j.arabjc.2017.05.011.

[3] Ema M, Okuda H, Gamo M, et al. A review of reproductive and developmental toxicity of silver nanoparticles in laboratory animals. Reprod Toxicol 2017;67:149-64. https:// doi.org/10.1016/j.reprotox.2017.01.005.

[4] Dawood NM, Abdul-Hammid SN, Hussein AA. Formulation and characterization of lafutidine nanosuspension for oral drug delivery system. Int J Appl Pharm 2018;10(2):20-30. https://doi.org/10.22159/ijap.2018v10i2.23075.

[5] Rafique M, Sadaf I, Rafique MS, et al. A review on green synthesis of silver nanoparticles and their applications. Artif MA'AEN JOURNAL FOR MEDICAL SCIENCES 2024;XX:1-9 7 Cells, Nanomed Biotechnol 2016;45:1-20. https://doi.org/ 10.1080/21691401.2016.1241792.

[6] Mathur P, Jha S, Ramteke S, Jain NK. Pharmaceutical aspects of silver nanoparticles. Artif Cell Nanomed Biotechnol 2018; 46(sup1):115-26. https://doi.org/10.1080/21691401.2017. 1414825.

[7] Fayaz AM, Balaji K, Girilal M, Yadav R, Kalaichelvan PT, Venketesan R. Biogenic synthesis of silver nanoparticles and their synergistic effect with antibiotics: a study against grampositive and gram-negative bacteria. Nanomed Nanotechnol Biol Med 2010;6(1):103-9. https://doi.org/10.1016/j.nano. 2009.04.006.

[8] Gomathi AC, Rajarathinam SX, Sadiq AM, Rajeshkumar S. Anticancer activity of silver nanoparticles synthesized using aqueous fruit shell extract of Tamarindus indica on MCF-7 human breast cancer cell line. J Drug Deliv Sci Technol 2020; 55:101376. https://doi.org/10.1016/j.jddst.2019.101376.

[9] Priyadarshni KC, Mahalingam PU. Antimicrobial and anticancer activity of silver nanoparticles from edible mushroom: a review. Asian J Pharmaceut Clin Res 2017;10:37-41. https://doi.org/10.22159/ajpcr.2017.v10i3.16027.

[10] Yusuf M. Silver nanoparticles: Synthesis and applications. Handbook of Ecomaterials 2020;12:2343. 10.1007%2F978-3- 319-68255-6_16.

[11] Iravani S, Korbekandi H, Mirmohammadi SV, Zolfaghari B. Synthesis of silver nanoparticles: chemical, physical and biological methods. Research in pharmaceutical sciences 2014;9(6):385. http://www.ncbi.nlm.nih.gov/pmc/articles/ pmc4326978/.

[12] Abbasi E, Milani M, Fekri Aval S, Kouhi M, Akbarzadeh A, Tayefi Nasrabadi H, et al. Silver nanoparticles: synthesis methods, bio-applications and properties. Crit Rev Microbiol 2016;42(2):173-80. https://doi.org/10.3109/1040841X.2014. 912200.

[13] Baker C, Pradhan A, Pakstis L, Pochan DJ, Shah SI. Synthesis and antibacterial properties of silver nanoparticles. J Nanosci Nanotechnol 2005;5(2):244-9. https://doi.org/10.1166/jnn. 2005.034.

[14] Abou El-Nour KM, Eftaiha AA, Al-Warthan A, Ammar RA. Synthesis and applications of silver nanoparticles. Arab J Chem 2010;3(3):135-40. https://doi.org/10.1016/j.arabjc.2010. 04.008.

[15] Khodashenas B, Ghorbani HR. Synthesis of silver nanoparticles with different shapes. Arab J Chem 2019;12(8): 1823-38. https://doi.org/10.1016/j.arabjc.2014.12.014.

[16] Javed R, Zia M, Naz S, Aisida SO, ul Ain N, Ao Q. Role of capping agents in the application of nanoparticles in biomedicine and environmental remediation: recent trends and future prospects. J Nanobiotechnol 2020;18(1):1-5. https://doi.org/10.1186/s12951-020-00704-4.

[17] Zielinska A, Skwarek E, Zaleska A, Gazda M, Hupka J. Preparation of silver nanoparticles with controlled particle size. Procedia Chem 2009;1(2):1560-6. https://doi.org/ 10.1016/j.proche.2009.11.004.

[18] Kis-Csitari J, Konya Z, Kiricsi I. Sonochemical synthesis of inorganic nanoparticles. In: Functionalized nanoscale Materials, devices and systems. Dordrecht: Springer; 2008. p. 369-72. https://link.springer.com/book/10.1007/978-1- 4020-8903-9.

[19] Khaydarov RA, Khaydarov RR, Gapurova O, Estrin Y, Scheper T. Electrochemical method for the synthesis of silver nanoparticles. J Nanoparticle Res 2009 Jul;11(5):1193-200. https://doi.org/10.1007/s11051-008-9513-x.

[20] Setyawan H, Widiyastuti W. Progress in the preparation of magnetite nanoparticles through the electrochemical method. KONA Powder and Particle J 2019:2019011. https:// doi.org/10.14356/kona.2019011.

[21] Hashemi SF, Tasharrofi N, Saber MM. Green synthesis of silver nanoparticles using Teucrium polium leaf extract and assessment of their antitumor effects against MNK45 human gastric cancer cell line. J Mol Struct 2020;1208:127889. https:// doi.org/10.1016/j.molstruc.2020.127889.

[22] Bahrulolum H, Nooraei S, Javanshir N, Tarrahimofrad H, Mirbagheri VS, Easton AJ, Ahmadian G. Green synthesis of metal nanoparticles using microorganisms and their application in the agrifood sector. J Nanobiotechnol 2021;19(1): 1-26. https://doi.org/10.1186/s12951-021-00834-3.

[23] Sargazi A, Barani A, Heidari Majd M. Synthesis and Apoptotic Efficacy of Biosynthesized Silver Nanoparticles Using Acacia luciana Flower Extract in MCF-7 Breast Cancer Cells: Activation of Bak1 and Bclx for Cancer Therapy. Bio- NanoScience 2020 Sep;10:683-9. https://link.springer.com/ article/10.1007/s12668-020-00753-x.

[24] Xu L, Wang YY, Huang J, Chen CY, Wang ZX, Xie H. Silver nanoparticles: Synthesis, medical applications and biosafety. Theranostics 2020;10(20):8996. 10.7150%2Fthno.45413.

[25] Ali J, Ali N, Wang L, Waseem H, Pan G. Revisiting the mechanistic pathways for bacterial mediated synthesis of noble metal nanoparticles. J Microbiol Methods 2019;159: 18-25. https://doi.org/10.1016/j.mimet.2019.02.010.

[26] Singh I. Biosynthesis of silver nanoparticle from fungi, algae and bacteria. European J Biol Res 2019;9(1):45-56. https:// doi.org/10.5281/zenodo.2617168.

[27] Singh D, Rathod V, Ninganagouda S, Herimath J, Kulkarni P. Biosynthesis of silver nanoparticle by endophytic fungi Pencillium sp. isolated from Curcuma longa (turmeric) and its antibacterial activity against pathogenic gram negative bacteria. J Pharm Res 2013;7(5):448-53. https://doi.org/ 10.1016/j.jopr.2013.06.003.

[28] Khan AU, Malik N, Khan M, et al. Fungi-assisted silver nanoparticle synthesis and their applications. Bioproc Biosyst Eng 2018;41:1-20. https://doi.org/10.1007/s00449-017- 1846-3.

[29] Hamedi S, Ghaseminezhad M, Shokrollahzadeh S, Shojaosadati SA. Controlled biosynthesis of silver nanoparticles using nitrate reductase enzyme induction of filamentous fungus and their antibacterial evaluation. Artif Cells, Nanomed Biotechnol 2017;45:1588-96. https://doi.org/ 10.1080/21691401.2016.1267011.

[30] Ovais M, Khalil AT, Islam NU, Ahmad I, Ayaz M, Saravanan M, et al. Role of plant phytochemicals and microbial enzymes in biosynthesis of metallic nanoparticles. Appl Microbiol Biotechnol 2018;102:6799-814. https:// doi.org/10.1007/s00253-018-9146-7.

[31] Khorrami S, Zarrabi A, Khaleghi M, Danaei M, Mozafari M. Selective cytotoxicity of green synthesized silver nanoparticles against the MCF-7 tumor cell line and their enhanced antioxidant and antimicrobial properties. Int J Nanomed 2018;13:8013. https://doi.org/10.2147/ijn.s189295.

[32] Küünal S, Visnapuu M, Volubujeva O, Rosario MS, Rauwel P, Rauwel E. Optimisation of plant mediated synthesis of silver nanoparticles by common weed Plantago major and their antimicrobial properties. IOP Conf Ser Mater Sci Eng 2019:8-12. https://doi.org/10.1088/1757-899X/ 613/1/012003.

[33] Jadoun S, Arif R, Jangid NK, Meena RK. Green synthesis of nanoparticles using plant extracts: A review. Environ Chem Lett 2021;19(1):355-74. https://doi.org/10.1007/s10311-020- 01074-x.

[34] Prasad R. Synthesis of silver nanoparticles in photosynthetic plants. Journal of Nanoparticles 2014;2014. https://doi.org/ 10.1155/2014/963961.

[35] Pei J, Fu B, Jiang L, Sun T. Biosynthesis, characterization, and anticancer effect of plant-mediated silver nanoparticles using coptis chinensis. Int J Nanomed 2019;14:1969-78. https:// doi.org/10.2147/ijn.s188235.

[36] Jain N, Jain P, Rajput D, Patil UK. Green synthesized plantbased silver nanoparticles: therapeutic prospective for anticancer and antiviral activity. Micro and Nano Systems Letters 2021;9(1):5. https://doi.org/10.1186/s40486-021-00131-6.

[37] Zhang XF, Liu ZG, Shen W, Gurunathan S. Silver Nanoparticles: Synthesis, Characterization, Properties, Applications, and Therapeutic Approaches. Int J Mol Sci 2016;17(9): 1534. https://doi.org/10.3390/ijms17091534. 8 MA'AEN JOURNAL FOR MEDICAL SCIENCES 2024;XX:1-9

[38] Andal Perumal, Tamilselvy S, Indra Priyatharesini P. Green Synthesis of Silver Nanoparticles from Carrot. Res J Pharm Technol 2018;11(7):2757-60. https://doi.org/10.5958/0974- 360X.2018.00509.7.

[39] Shanmuga Priya T, Balasubramanian V. Enzyme Mediated Synthesis of Silver Nanoparticles using Marine Actinomycetes and Their Characterization. Biosciences Biotechnol Res Asia 2014;11:159-65. https://doi.org/10.13005/bbra/1405.

[40] Sabri LA, Hussein AA. Comparison between conventional and supersaturable self-nanoemulsion loaded with nebivolol: Preparation and in-vitro/ex-vivo evaluation. Iraqi J Pharm Sci 2020;29(1):216-25. https://doi.org/10.31351/ vol29iss1pp216-225.

[41] Lotfy WA, Alkersh BM, Sabry SA, Ghozlan HA. Biosynthesis of silver nanoparticles by Aspergillus terreus: Characterization, optimization, and biological activities. Front Bioeng Biotechnol 2021;9:633468. https://doi.org/10.3389/fbioe.2021. 633468.

[42] Hashim AA, Rajab NA. Anastrozole loaded nanostructured lipid carriers: preparation and evaluation. Iraqi J Pharm Sci 2021;30(2):185-95. https://doi.org/10.31351/vol30iss2pp185- 195.

[43] Rautela A, Rani J, Debnath (Das) M. Green synthesis of silver nanoparticles from Tectona grandis seeds extract: characterization and mechanism of antimicrobial action on different microorganisms. J Anal Sci Technol 2019;10:5-15. https:// doi.org/10.1186/s40543-018-0163-z.

[44] Misirli GM, Sridharan K, Abrantes SMP. A review on nanostructured silver as a basic ingredient in medicine: physicochemical parameters and characterization. Beilstein J Nanotechnol 2021;12:440-61. https://doi.org/10.3762/ bjnano.12.36.

[45] Rashid AM, Abdal-Hammid SN. Formulation and Characterization of Itraconazole as Nanosuspension Dosage Form for Enhancement of Solubility. Iraqi J Pharm Sci 2019;28(2): 124-33. https://doi.org/10.31351/vol28iss2pp124-133.

[46] Chandan G, Pal S, Kashyap S, Siwal SS, Dhiman SK, Saini AK, Saini RV. Synthesis, characterization and anticancer activities of silver nanoparticles from the leaves of Datura stramonium L. Nanofabrication 2021;6(1):25-35. https://doi.org/10.1515/nanofab-2020-0103.

[47] Kovacs D, Igaz N, Gopisetty MK, Kiricsi M. Cancer therapy by silver nanoparticles: Fiction or reality? Int J Mol Sci 2022; 23:839. https://doi.org/10.3390/ijms23020839.

[48] Takac P, Michalkova R, Cizmarikova M, Bedlovicova Z, L Balazova, Takacova G. The Role of Silver Nanoparticles in the Diagnosis and Treatment of Cancer: Are There Any Perspectives for the Future? Life 2023;13(2):466. https:// doi.org/10.3390/life13020466.

49] Sun Y, Liu Y, Ma X, Hu H. The Influence of Cell Cycle Regulation on Chemotherapy. Int J Mol Sci 2021;22:6923. https://doi.org/10.3390/ijms22136923.

[50] Miranda RR, Sampaio I, Zucolotto V. Exploring silver nanoparticles for cancer therapy and diagnosis. Colloids Surf B Biointerfaces 2022;210:112254. https://doi.org/10.1016/ j.colsurfb.2021.112254.

[51] Pasparakis G. Recent developments in the use of gold and silver nanoparticles in biomedicine. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology 2022;14(5): e1817. https://doi.org/10.1002/wnan.1817.

[52] Alharbi NS, Alsubhi NS, Felimban AI. Green synthesis of silver nanoparticles using medicinal plants: Characterization and application. J Radiat Res Appl Sci 2022;15(3):109-24. https://doi.org/10.1016/j.jrras.2022.06.012.

[53] Da Silva PB, Machado RT, Pironi AM, Alves RC, De Araújo PR, Dragalzew AC, Dalberto I, Chorilli M. Recent advances in the use of metallic nanoparticles with antitumoral action-review. Curr Med Chem 2019;26(12):2108-46. https://doi.org/10.2174/0929867325666180214102918.

[54] Di Pietro P, Strano G, Zuccarello L, Satriano C. Gold and silver nanoparticles for applications in theranostics. Curr Top Med Chem 2016;16(27):3069-102. https://doi.org/ 10.2174/1568026616666160715163346.

[55] Thakur V, Kutty RV. Recent advances in nanotheranostics for triple negative breast cancer treatment. J Exp Clin Cancer Res 2019;38(1):1-22. https://doi.org/10.1186/s13046-019-1443-1.

[56] Haghighatafshar H, Golestani Eimani B, Moazamian E, Amani J. The anticancer effect of recombinant LukS-PV protein and silver nanoparticles loaded with this protein. Amb Express 2023;13(1):1-4. https://doi.org/10.1186/s13568- 023-01558-3.

[57] Abdel-Fattah WI, Ali GW. On the anti-cancer activities of silver nanoparticles. J Appl Biotechnol Bioeng 2018;5(2):1-4. https://doi.org/10.15406/jabb.2018.05.00116.

[58] Ebrahimzadeh MA, Tafazoli A, Akhtari J, Biparva P, Eslami S. Engineered silver nanoparticles, a new nanoweapon against cancer. Anti Cancer Agents Med Chem 2018; 18(14):1962-9. https://doi.org/10.2174/187152061866618080 8093040.

[59] Fehaid A, Taniguchi A. Size-Dependent Effect of Silver Nanoparticles on the Tumor Necrosis Factor a-Induced DNA Damage Response. Int J Mol Sci 2019 Feb 27;20(5):1038. https://doi.org/10.3390/ijms20051038.

[60] Refaat M, Fathy S, Ragaa M, Osman S, Raafat A, Hassan A. Silver Nanoparticles Attenuate Inflammation aggravation in Hepatocellular Carcinoma in Rats. Arab Journal of Nuclear Sciences and Applications 2023 Jul 1;56(4):73-80. https:// doi.org/10.21608/ajnsa.2023.180669.1698.

[61] Mishra AR, Zheng J, Tang X, Goering PL. Silver Nanoparticle- Induced Autophagic-Lysosomal Disruption and NLRP3-Inflammasome Activation in HepG2 Cells Is Size- Dependent. Toxicol Sci 2016;150(2):473-87. https://doi.org/ 10.1093/toxsci/kfw011.

[62] Kovacs D, Szoke K, Igaz N, Spengler G, Molnar J, Toth T, et al. Silver nanoparticles modulate ABC transporter activity and enhance chemotherapy in multidrug resistant cancer. Nanomed Nanotechnol Biol Med 2016;12:601-10. https:// doi.org/10.1016/j.nano.2015.10.015.

[63] Gomes HIO, Martins CSM, Prior JAV. Silver Nanoparticles as Carriers of Anticancer Drugs for Efficient Target Treatment of Cancer Cells. Nanomaterials 2021;11:964-95. https:// doi.org/10.3390%2Fnano11040964.

[64] Ferdous Z, Nemmar A. Health impact of silver nanoparticles: a review of the biodistribution and toxicity following various routes of exposure. Int J Mol Sci 2020;21:1-31. https:// doi.org/10.3390/ijms21072375.