Abstract
The use of vesicular structures as a drug delivery method has many advantages, including extending the duration of the drug's action in circulation, enhancing drug targeting, minimizing adverse effects, and boosting the bioavailability of a variety of medications. Spanlastics, which are elastic and can transport a range of pharmaceutical substances, are thought to be a subset of nanovesicles. They have drawn interest as a potentially effective medicine delivery method. They are a preferred choice for many administration routes because of their pliable and elastic nature, which allows them to pass through various cellular membranes. Non-ionic surfactants or a mixture of surfactants and a nanoscale edge activator make up these nanovesicles. Researchers have established that SPs improve drug bioavailability. The structure, composition, special qualities, and applicability as a cutting-edge drug delivery system for encapsulating a range of medications to treat various ailments are all covered in this review paper.
Recommended Citation
Alhammid, Shaimaa N. Abd; Kassab, Hanan J.; Hussein, Lina S.; Haiss, Mahmood A.; and Alkufi, Hussein k.
(2023)
"Spanlastics Nanovesicles: An Emerging and Innovative Approach for Drug Delivery,"
Maaen Journal for Medical Sciences: Vol. 2
:
Iss.
3
, Article 2.
Available at: https://doi.org/10.55810/2789-9136.1027
References
[1] Rao BN, Reddy KR, Mounika B, Fathima SR, Tejaswini A. Vesicular drug delivery system: a review. Int J ChemTech Res 2019;12(5):39e53. https://doi.org/10.20902/IJCTR.2019.120505.
[2] Ren Y, Nie L, Zhu S, Zhang X. Nanovesicles-Mediated Drug Delivery for Oral Bioavailability Enhancement. Int J Nanomed 2022;17:4861e77. https://doi.org/10.2147/IJN.S382192.
[3] Pramod PS, Takamura K, Chaphekar S, et al. Dextran vesicular carriers for dual encapsulation of hydrophilic and hydrophobic molecules and delivery into cells. Biomacromolecules 2012; 13(11):3627e40. https://doi.org/10.1021/bm301583s.
[4] Garg T, Goyal AK. Biomaterial-based scaffolds-current status and future directions. Expet Opin Drug Deliv 2014;11(5): 767e89. https://doi.org/10.1517/17425247.2014.891014.
[5] Sallam N, Sanad R, Khafagy ES, Ahmed M, Ghourab M, Gad S. Colloidal delivery of drugs: present strategies and conditions. Records of Pharmaceutical and Biomedical Sciences, 5(Pharmacology-Pharmaceutics) 2021;5(3):40e51. https://doi.org/ 10.21608/rpbs.2020.30372.1070.
[6] Kakkar S, Kaur IP. Spanlastics-A Novel Nanovesicular Carrier System for Ocular Delivery. Int J Pharm 2011;413(1e2): 202e10. https://doi.org/10.1016/j.ijpharm.2011.04.027.
[7] Ansari MD, Saifi Z, Pandit J, Khan I, Solanki P, Sultana Y, Aqil M. Spanlastics a Novel Nanovesicular Carrier: Its Potential Application and Emerging Trends in Therapeutic Delivery. AAPS PharmSciTech 2022;23(4):112. https:// doi.org/10.1208/s12249-022-02217-9.
[8] Tayel SA, El-Nabarawi MA, Tadros MI, Abd-Elsalam WH. Duodenum-triggered delivery of pravastatin sodium via enteric surface-coated nanovesicular spanlastic dispersions: Development, characterization and pharmacokinetic assessments. Int J Pharm 2015;483(1e2):77e88. https://doi.org/ 10.1016/j.ijpharm.2015.02.012.
[9] Abdelbari MA, El-Mancy SS, Elshafeey AH, Abdelbary AA. Implementing spanlastics for improving the ocular delivery of clotrimazole: in vitro characterization, ex vivo permeability, microbiological assessment and in vivo safety study. Int J Nanomed 2021;16:6249e61. https://doi.org/10.2147/ IJN.S319348. . [10] Badria F, Mazyed E. Formulation of nanospanlastics as a promising approach for improving the topical delivery of a natural leukotriene inhibitor (3-acetyl-11-keto-b-boswellic acid): Statistical optimization, in vitro characterization, and ex vivo permeation study. Drug Des Dev Ther 2020;14: 3697e721. https://doi.org/10.2147/DDDT.S265167.
[11] Chauhan MK, Khanna G. Recent advance of nanotechnology for the treatment of ocular disease. Khanna al. World J Pharm Res. 2018;7(15):239e57. https://doi.org/10.20959/ wjpr201815-12968.
[12] Gaafar PME, Abdallah OY, Farid RM, Abdelkader H. Preparation, characterization and evaluation of novel elastic nanosized niosomes (ethoniosomes) for ocular delivery of prednisolone. J Liposome Res 2014;24(3):204e15. https:// doi.org/10.3109/08982104.2014.881850.
[13] El Meshad AN, Mohsen AM. Enhanced corneal permeation and antimycotic activity of itraconazole against Candida albicans via a novel nanosystem vesicle. Drug Deliv 2016; 23(7):2115e23. https://doi.org/10.3109/10717544.2014.942811.
[14] Maiti B, Kakkar S, Kaur IP, Basha M, Abd El-Alim SH, et al. Preparation of an anti-inflammatory agent in different dosage forms for topical application a thesis presented By Int J Pharm 2019;18(1):70e7. https://doi.org/10.1016/j.ijpharm. 2015.02.012.
[15] Abdelrahman FE, Elsayed I, Gad MK, Elshafeey AH, Mohamed MI. Response surface optimization, ex vivo and in vivo investigation of nasal spanlastics for bioavailability enhancement and brain targeting of risperidone. Int J Pharm. MA'AEN JOURNAL FOR MEDICAL SCIENCES 2023;2:100e107 105 Elsevier B.V. 2017;530(12):1e11. https://doi.org/10.1016/ j.ijpharm.2017.07.050.
[16] Sallam NM, Sanad RAB, Ahmed MM, Khafagy ES, Ghorab M, Gad S. Impact of the mucoadhesive lyophilized wafer loaded with novel carvedilol nano-spanlastics on biochemical markers in the heart of spontaneously hypertensive rat models. Drug Deliv. Transl. Res. Drug Delivery and Transl Res. 2020;11:1009e36. https://doi.org/10.1007/ s13346-020-00814-4.
[17] [17] Ramadon D, McCrudden MTC, Courtenay AJ, Donnelly RF. Enhancement strategies for transdermal drug delivery systems: current trends and applications. Drug Deliv Transl Res 2021;12:758e91. https://doi.org/10.1007/s13346-021- 00909-6.
[18] Kaur IP, Rana C, Singh M, et al. Development and evaluation of novel surfactant-based elastic vesicular system for ocular delivery of fluconazole. J Ocul Pharmacol Therapeut 2012;28: 484e96. https://doi.org/10.1089/jop.2011.0176.
[19] Sharma A, Pahwa S, Bhati S, Kudeshia P. Spanlastics: A modern approach for nanovesicular drug delivery system. Int J Pharma Sci Res 2020;11:1057e65. https://doi.org/ 10.13040/IJPSR.0975-8232.11(3).1057-65. .
[20] Abd Elhameed AG, Yasser M. Formulation and optimization of nanospanlastics for improving the bioavailability of green tea epigallocatechin gallate. 68 Pharmaceuticals 2021;14(1): 1e30. https://doi.org/10.3390/ph14010068.
[21] Khositsuntiwong N, Manosroi A, Gotz F, Werner RG, € Manosroi W, Manosroi J. Enhancement of gene expression and melanin production of human tyrosinase gene loaded in elastic cationic niosomes. J Pharm Pharmacol 2012;64(10): 1376e85. https://doi.org/10.1111/j.2042-7158.2012.01509.x.
[22] Elsaied EH, Dawaba HM, Ibrahim ESA, Afouna MI. Effect of pegylated edge activator on span 60 based- nanovesicles: comparison between Myrj 52 and Myrj 59. Univers. J. Pharm. Res. 2019;4(4):1e8. https://doi.org/10.22270/ujpr.v4i4.290.
[23] El Menshawe SF, Nafady MM, Aboud HM, Kharshoum RM, Elkelawy AMMH, Hamad DS. Transdermal delivery of fluvastatin sodium via tailored spanlastic nanovesicles: mitigated Freund’s adjuvant-induced rheumatoid arthritis in rats through suppressing p38 MAPK signaling pathway. Drug Deliv 2019;26(1):1140e54. https://doi.org/10.1080/10717544. 2019.1686087.
[24] Alisagar S, Tushar KV, Mansoor MA. Nanocarriers for systemic and mucosal vaccine delivery. Recent Pat Drug Delivery Formulation 2007;1(1):1e91. https://doi.org/10.2174/ 187221107779814140.
[25] Lee VH, Robinson JR. Enzymatic Barriers to Peptide and Protein Absorption. Crit Rev Ther Drug Carrier Syst 1998; 5(2):69e97. PMID: 3052875.
[26] Alleman E, Leroux JC, Gurny R. Polymeric Nano-and Microparticles for the oral delivery of peptides and peptidomimetics. Adv Drug Deliv Rev 1998;34(2e3):171e89. https:// doi.org/10.1016/s0169-409x(98)00039-8.
[27] Shepherd SJ, Warzecha CC, Yadavali S, El-Mayta R, Alameh MG, Wang L, Weissman D, Wilson JM, Issadore D, Mitchell MJ. Scalable mRNA and siRNA lipid nanoparticle production using a parallelized microfluidic device. Nano Lett 2021;21(13):5671e80. https://doi.org/10.1021/acs.nano lett.1c01353.
[28] Elhabak M, Ibrahim S, Abouelatta SM. Topical delivery of lascorbic acid spanlastics for stability enhancement and treatment of UVB induced damaged skin. Drug Deliv 2021; 28(1):445e53. https://doi.org/10.1080/10717544.2021.1886377. . [29] Al-masri H. Biowaiver monogragh for ascorbic acid immediate release solid oral dosage forms. Nablus. Palestine: Ph.D. thesis. Al-Najah National University; 2015.
[30] Aggarwal P, Chand B. Development and optimization of econazole spanlastics for fungal keratitis. World J Pharmaceut Res 2018;7(13):1221e42. https://doi.org/10.20959/wjpr201813-12837.
[31] Alhakamy NA, Al-Rabia MW, Md S, Sirwi A, Khayat SS, AlOtaibi SS, et al. Development and optimization of luliconazole spanlastics to augment the antifungal activity against candida albicans. Pharmaceutics 2021;13(7):977. https:// doi.org/10.3390/pharmaceutics13070977. 981-20.
[32] Almuqbil RM, Sreeharsha N, Nair AB. Formulation-byDesign of Efinaconazole Spanlastic Nanovesicles for Transungual Delivery Using Statistical Risk Management and Multivariate Analytical Techniques. 1419 Pharmaceutics 2022; 14(7):1e19. https://doi.org/10.3390/pharmaceutics14071419.
[33] Elsherif NI, Shamma RN, Abdelbary G. Terbinafine hydrochloride trans-ungual delivery via nanovesicular systems: in vitro characterization and ex vivo evaluation. AAPS PharmSciTech 2017;18:551e62. https://doi.org/10.1208/ s12249-016-0528-9. .
[34] Fahmy AM, El-Setouhy DA, Ibrahim AB, Habib BA, Tayel SA, Bayoumi NA. Penetration enhancer-containing spanlastics (PECSs) for transdermal delivery of haloperidol: in vitro characterization, ex vivo permeation and in vivo biodistribution studies. Drug Deliv 2018;25(1):12e22. https:// doi.org/10.1080/10717544.2017.1410262. .
[35] Elsaied EH, Dawaba HM, Ibrahim ESA, Afouna MI. Spanlastics gel-A novel drug carrier for transdermal delivery of glimepiride. J Liposome Res 2023;33(1):102e14. https:// doi.org/10.1080/08982104.2022.2100902. .
[36] Yassin GE, Amer RI, Fayez AM. Carbamazepine loaded vesicular structures for enhanced brain targeting via intranasal route: Optimization, in vitro evaluation, and in vivo study. 11(4). 2019264e274. https://doi.org/10.22159/ijap.2019v11i4.33474.
[37] Alharbi WS, Hareeri RH, Bazuhair M, Alfaleh MA, Alhakamy NA, Fahmy UA, Naguib MJ. Spanlastics as a Potential Platform for Enhancing the Brain Delivery of Flibanserin: In Vitro Response-Surface Optimization and In Vivo Pharmacokinetics Assessment. Pharmaceutics 2022;14(12): 2627. https://doi.org/10.3390/pharmaceutics14122627. 2631-16.
[38] Ali MM, Shoukri RA, Yousry C. Thin film hydration versus modified spraying technique to fabricate intranasal spanlastic nanovesicles for rasagiline mesylate brain delivery: Characterization, statistical optimization, and in vivo pharmacokinetic evaluation. Drug Deliv Trans Res 2023;13(4): 1153e68.
[39] Abdelmonem R, El Nabarawi M, Attia A. Development of novel bioadhesive granisetron hydrochloride spanlastic gel and insert for brain targeting and study their effects on rats. Drug Deliv 2018;25(1):70e7. https://doi.org/10.1080/10717544. 2017.1413447. .
[40] Al-mahallawi AM, Khowessah OM, Shoukri RA. Enhanced non invasive trans-tympanic delivery of ciprofloxacin through encapsulation into nano-spanlastic vesicles: fabrication, in-vitro characterization, and comparative ex-vivo permeation studies. Int J Pharm 2017;522(1e2):157e64. https://doi.org/10.1016/j.ijpharm.2017.03.005.
[41] Mekkawy AI, Eleraky NE, Soliman GM, Elnaggar MG, Elnaggar MG. Combinatorial Therapy of Letrozole-and Quercetin-Loaded Spanlastics for Enhanced Cytotoxicity against MCF-7 Breast Cancer Cells. 1727 Pharmaceutics 2022; 14(8):1e21. https://doi.org/10.3390/pharmaceutics14081727.
[42] Suma US, Parthiban S, Kumar GPS. Formulation and evaluation of niosomal gel for transdermal delivery of lamivudine. World J Pharmaceut Res 2016;5:1332e42.
[43] Balakrishnan P, Shanmugam S, Lee WS, Lee WM, Kim JO, Oh DH, Kim DD, Kim JS, Yoo BK, Choi HG, Woo JS, Yong CS. Formulation and in-vitro assessment of minoxidil niosomes for enhanced skin delivery. Int J Pharm 2009;377: 1e8. https://doi.org/10.1016/j.ijpharm.2009.04.020.
[44] El Meshad AN, Mohsen AM. Enhanced corneal permeation and antimycotic activity of itraconazole against Candida albicans via a novel nanosystem vesicle. Drug Deliv 2016; 23(7):2115e23. https://doi.org/10.3109/10717544.2014.942811. . [45] Sallam NM, Abdel R, Sanad B, Ahmed MM, Khafagy EL, Ghorab M, Gad S. Impact of The Mucoadhesive Lyophilized Wafer Loaded with Novel Carvedilol NanoSpanlastics On Biochemical Markers in The Heart of Spontaneously Hypertensive Rat Models. Drug Deliv. And Transl. Res 2020: 1e30. https://doi.org/10.1007/s13346-020-00814-4.
[46] Ge Yassin, Amer Reham I, Ahmed M, Fayez. Carbamazepine Loaded Vesicular Structures for Enhanced Brain Targeting Via Intranasal Route: Optimization, In Vitro Evaluation, And In Vivo Study. Int J Appl Pharm 2019;11(4):264e74. https:// doi.org/10.22159/ijap.2019v11i4.33474.
[47] El Menshawe Shahira F, Nafady Mohamed M, Aboud Heba M, Kharshoum Rasha M, Hussein Elkelawy Asmaa Mohammed M, Doaa S. Hamad Transdermal Delivery of Fluvastatin Sodium Via Tailored Spanlastic Nanovesicles: Mitigated Freund's Adjuvant Induced Rheumatoid Arthritis in Rats Through Suppressing P38 MAPK Signaling Pathway. Drug Deliv 2019;26(1):1140e54. https://doi.org/10.1080/ 10717544.2019.1686087
Indexed in: