•  
  •  
 

Abstract

Recent breakthroughs in pharmaceutical delivery methods employing a range of carriers have radically transformed modern diagnostic and therapeutic practices. Mesoporous silica nanoparticles (MSNs) were created due to the demand for substances with superior thermal and chemical capabilities. These ordered porous substances have generated a lot of interest as carriers due to their distinct advantages over the competition. They may be made economically using a simple process. Moreover, the shape, pore size, and particle size may all be changed by modifying the synthesis's conditions. Investigations on MSNs as drug carriers have reportedly accelerated in recent years, highlighting the potential benefits of such a drug delivery approach. MSNs have proven to be effective transporters for anticancer, anti-inflammatory, and neurological medications. This review discusses the origin, synthesis, and most recent applications of MSN

References

  1. Kankala RK, Zhang YS, Wang SB, Lee CH, Chen AZ. Supercritical fluid technology: an emphasis on drug delivery and related biomedical applications. Adv. Healthc. Mater 2017; 6: 1700433. https://doi.org/10.1002/adhm.201700433

  1. Mitchell MJ, Billingsley MM, Haley RM et al. Engineering precision nanoparticles for drug delivery. Nat Rev Drug Discov 2021; 20: 101–24. https://doi.org/10.1038/s41573-020-0090-8.

  1. Han YH, Kankala R. Wang SB, Chen AZ. Leveraging engineering of indocyanine green-encapsulated polymeric nanocomposites for biomedical applications. Nanomaterials 2018; 8: 360.  https://doi.org/10.3390/nano8060360

  1. Jafari S, Derakhshankhah H, Alaei L, Fattahi A, Varnamkhasti BS, Saboury AA. Mesoporous silica nanoparticles for therapeutic/diagnostic applications. Biomed Pharmacother 2019; 109:1100–111. https://doi.org/10.1016/j.biopha.2018.10.167

  1. Bharti C, Nagaich U, Pal AK, Gulati N. Mesoporous silica nanoparticles in target drug delivery system: a review. Int J Pharm Investig 2015; 5 (3):124. https://doi.org/10.4103/2230-973X.160844

  1. Castillo RR, Lozano D, Vallet-Regí M. Mesoporous silica nanoparticles as carriers for therapeutic biomolecules. Pharmaceutics 2020; 12 (5):432. https://doi.org/10.3390/pharmaceutics12050432

  1. Fotoohi B, Mercier L, Modification of pore structure and functionalization in MSU-X silica and application in adsorption of gold thiosulfate, Microporous and Mesoporous Materials 2014; 190: 255-66. https://doi.org/10.1016/j.micromeso.2014.02.020.

  1. Pagar NS, Karandikar PR, Chandwadkar, AJ, Deshpande RM. Synthesis, characterization and catalytic study of mesoporous carbon materials prepared via mesoporous silica using non-surfactant templating agents. Journal of Porous Materials 2020; 28(2): 423–33. https://doi.org/10.1007/s10934-020-01003-x

  1. Stober W, Fink A, Bohn E. Controlled growth of monodisperse silica spheres in the micron size range. J. Colloid Interface Sci. 1968; 26: 62–9. https://doi.org/10.1016/0021-9797(68)90272-5.

  1. Ge L, Feng Y, Dai Y, Wang R & Ge T. Imidazolium-based ionic liquid confined into ordered mesoporous MCM-41 for efficient dehumidification. Chemical Engineering Journal 2023; 452: 139116. https://doi.org/10.1016/j.cej.2022.139116

  1. Blin JL, Impéror-Clerc M. Mechanism of self-assembly in the synthesis of silica mesoporous materials: In situ studies by X-ray and neutron scattering. Chem. Soc. Rev. 2013; 42: 4071–82. https://doi.org/10.1039/c2cs35362h

  1. [11] Liu Z, Fontana F, Python A, Hirvonen JT, Santos HA. Microfluidics for Production of Particles: Mechanism, Methodology, and Applications 2020; 16(9): e1904673.

  1. https://doi.org/10.1002/smll.201904673.

  1. Czajka A, Liao G, Mykhaylyk OO & Armes SP. In situ small-angle X-ray scattering studies during the formation of polymer/silica nanocomposite particles in aqueous solution. Chemical Science 2021; 12(42): 14288–300. https://doi.org/10.1039/d1sc03353k

  1. Hollamby MJ, Borisova D, Brown P, Eastoe J, Grillo I, Shchukin D. Growth of Mesoporous Silica Nanoparticles Monitored by Time-Resolved Small-Angle Neutron Scattering. Langmuir 2012; 28: 4425–33. https://doi.org/10.1021/la203097x

  1. Skou S, Gillilan R & Ando N. Synchrotron-based small-angle X-ray scattering of proteins in solution. Nat Protoc 2014; 9, 1727–39. https://doi.org/10.1038/nprot.2014.

  1. Li Z, Zhang Y, Feng N. Mesoporous silica nanoparticles: synthesis, classification, drug loading, pharmacokinetics, biocompatibility, and application in drug delivery. Expert Opin Drug Deliv 2019; 16(3):219-37. https://doi.org/10.1080/17425247.2019.1575806.

  1. Vazquez IN, Gonzalez Z, Ferrari B, Castro Y, Synthesis of mesoporous silica nanoparticles by sol–gel as nanocontainer for future drug delivery applications, Boletín de la Sociedad Española de Cerámica y Vidrio 2017; 56(3): 139- 45, https://doi.org/10.1016/j.bsecv.2017.03.002

  1. Kango S, Kalia S, Celli A, Njuguna J, Habibi Y, Kumar R. Surface modification of inorganic nanoparticles for development of organic–inorganic nanocomposites—A review. Prog Polym Sci 2013; 38: 1232–61. https://doi.org/10.1016/j.progpolymsci.2013.02.003

  1. Yegorov AS, Ivanov VS, Antipov AV, Wozniak AI, Tcarkova KV. Chemical modification methods of nanoparticles of silicon carbide surface. Orient J Chem 2015; 31: 1269–75. https://doi.org/10.13005/ojc/310303

  1. Tao Z. Mesoporous silica-based nanodevices for biological applications. RSC Adv. 2014; 4: 18961–80. https://doi.org/10.1039/c3ra47166g

  1. Mamaeva V, Sahlgren C, Lindén M. Mesoporous silica nanoparticles in medicine—Recent advances. Adv Drug Deliv Rev 2013; 65: 689–702. https://doi.org/10.1016/j.addr.2012.07.018

  1. Cheng CJ, Tietjen GT, Saucier-Sawyer JK, Saltzman WM. A holistic approach to targeting disease with polymeric nanoparticles. Nat. Rev. Drug Discov. 2015; 14: 239–47. https://doi.org/10.1038/nrd4503

  1. Möller K, Kobler J, Bein T. Colloidal Suspensions of Nanometer-Sized Mesoporous Silica. Adv. Funct Mater 2007; 17: 605–12. https://doi.org/10.1002/adfm.200600578

  1. Qiao ZA, Zhang L, Guo M, Liu Y, Huo Q. Synthesis of Mesoporous Silica Nanoparticles via Controlled Hydrolysis and Condensation of Silicon Alkoxide. Chem Mater 2009; 21: 3823–29. https://doi.org/10.1021/cm901335k

  1. Ma K, Werner-Zwanziger U, Zwanziger J, Wiesner U. Controlling Growth of Ultrasmall Sub-10 nm Fluorescent Mesoporous Silica Nanoparticles. Chem Mater 2013; 25: 677–91. https://doi.org/10.1021/cm303242h

  1. Rahmani S, Durand JO, Charnay C, Lichon L, Férid M, Garcia M, Gary-Bobo M. Synthesis of mesoporous silica nanoparticles and nanorods: Application to doxorubicin delivery. Solid State Sci 2017; 68: 25–31. https://doi.org/10.1016/j.solidstatesciences.2017.04.003.

  1. Frickenstein AN, Hagood JM, Britten CN, Abbott BS, McNally MW, Vopat CA, Patterson EG, MacCuaig WM, Jain A, Walters KB, McNally LR. Mesoporous Silica Nanoparticles: Properties and Strategies for Enhancing Clinical Effect. Pharmaceutics 2021; 13(4):570. https://doi.org/10.3390/pharmaceutics13040570

  1. Gurka MK, Pender D, Chuong P, Fouts BL, Sobelov A, McNally MW, Mezera M, Woo SY, McNally LR. Identification of pancreatic tumors in vivo with ligand-targeted, pH responsive mesoporous silica nanoparticles by multispectral optoacoustic tomography. J Control Release 2016; 231: 60–7. https://doi.org/10.1016/j.jconrel.2015.12.055

  1. Zeiderman MR, Morgan DE, Christein JD, Grizzle WE, McMasters KM, McNally LR. Acidic pH-targeted chitosan-capped mesoporous silica coated gold nanorods facilitate detection of pancreatic tumors via multispectral optoacoustic tomography. ACS Biomater Sci Eng 2016; 2: 1108–20. https://doi.org/10.1021/acsbiomaterials.6b00111

  1. Jambhrunkar S, Yu M, Yang J, Zhang J, Shrotri A, Endo-Munoz L, Moreau J, Lu G, Yu C. Stepwise pore size reduction of ordered nanoporous silica materials at angstrom precision. J Am Chem Soc 2013; 135: 8444–47. https://doi.org/10.1021/ja402463h

  1. Liberman A, Mendez N, Trogler WC, Kummel AC. Synthesis and surface functionalization of silica nanoparticles for nanomedicine. Surf Sci Rep 2014; 69: 132–58. https://doi.org/10.1016/j.surfrep.2014.07.001

  1. Lin YS, Haynes CL. Impacts of mesoporous silica nanoparticle size, pore ordering, and pore integrity on hemolytic activity. J Am Chem Soc 2010; 132: 4834–42. https://doi.org/10.1021/ja910846q

  1. Ying G, Dongruo G, Jie S, Qiwen W. A Review of Mesoporous Silica Nanoparticle Delivery Systems in Chemo-Based Combination Cancer Therapies, Frontiers in Chemistry 2020; 8:598722. https://doi.org/10.3389/fchem.2020.598722. 

  1. Rajani C, Borisa P, Karanwad T, Borade Y, Patel V, Rajpoot K & Tekade RK. Cancer-targeted chemotherapy: Emerging role of the folate anchored dendrimer as drug delivery nanocarrier. Pharmaceutical Applications of Dendrimers, 2020; 151–98. https://doi.org/10.1016/b978-0-12-814527-2.00007-x

  1. Alyassin Y, Sayed GS, Mehta P, Ruparelia K, Arshad SM, Rasekh M, et al. Application of mesoporous silica nanoparticles as drug delivery carriers for chemotherapeutic agents, Drug Discovery Today 2020; 25(8) 1513-20. https://doi.org/10.1016/j.drudis.2020.06.006

  1. Zhang Y, Lou J, Williams GR, Ye Y, Ren D, Shi A, Wu J, Chen W, Zhu LM. Cu2+-Chelating Mesoporous Silica Nanoparticles for Synergistic Chemotherapy/Chemodynamic Therapy. Pharmaceutics 2022; 14(6):1200. https://doi.org/10.3390/pharmaceutics14061200.

  1. Gu Y, Fei Z. Mesoporous Silica Nanoparticles Loaded with Resveratrol Are Used for Targeted Breast Cancer Therapy. Journal of Oncology 2022; 2022: 8471331. https://doi.org/10.1155/2022/8471331

  1. Mora-Raimundo P, Lozano D, Manzano M, Vallet-Regí M. Nanoparticles to knockdown osteoporosis-related gene and promote osteogenic marker expression for osteoporosis treatment. ACS Nano 2019; 13 (5): 5451–64. https://doi.org/10.1021/acsnano.9b00241 

  1. Kim SJ, Choi Y, Min KT, Hong S. Dexamethasone-Loaded Radially Mesoporous Silica Nanoparticles for Sustained Anti-Inflammatory Effects in Rheumatoid Arthritis. Pharmaceutics 2022; 14(5):985. https://doi.org/10.3390/pharmaceutics14050985.

  1. Ribeiro TC, Sábio RM, Carvalho GC, Fonseca-Santos B, Chorilli M. Exploiting mesoporous silica, silver and gold nanoparticles for neurodegenerative diseases treatment. Int J Pharm 2022; 624:121978. https://doi.org/10.1016/j.ijpharm.2022.121978.

  1. Liu N, Yang C, Liang X, Cao K, Xie J, Luo Q, Luo H. Mesoporous silica nanoparticle-encapsulated Bifidobacterium attenuates brain Aβ burden and improves olfactory dysfunction of APP/PS1 mice by nasal delivery. J Nanobiotechnology 2022; 20 (1):439. https://doi.org/10.1186/s12951-022-01642-z.

  1. Díaz-García D, Ferrer-Donato Á, Méndez-Arriaga JM, Cabrera-Pinto M, Díaz-Sánchez M, Prashar S et al. Design of Mesoporous Silica Nanoparticles for the Treatment of Amyotrophic Lateral Sclerosis (ALS) with a Therapeutic Cocktail Based on Leptin and Pioglitazone. ACS Biomater Sci Eng 2022; 8(11):4838-49. https://doi.org/10.1021/acsbiomaterials.2c00865.

  1. Liu X, Jiang J, Chan R, Ji Y, Lu J, Liao Y-P, Okene M, Lin J, Lin P, Chang CH, et al. Improved efficacy and reduced toxicity using a custom-designed irinotecan-delivering silicasome for orthotopic colon cancer. ACS Nano 2019; 13:38–53. https://doi.org/10.1021/acsnano.8b06164

  1. Zhao Y, Wang Y, Ran F, Cui Y, Liu C, Zhao Q, Gao Y, Wang D, Wang S. A comparison between sphere and rod nanoparticles regarding their in vivo biological behavior and pharmacokinetics. Sci Rep 2017;7: 4131. https://doi.org/10.1038/s41598-017-03834-2

  1. Zhang Q, Xu H, Zheng S, Su M, Wang J. Genotoxicity of mesoporous silica nanoparticles in human embryonic kidney 293 cells. Drug Test Anal. 2015; 7:787–96. https://doi.org/10.1002/dta.1773

  1. Li L, Liu T, Fu C, Tan L, Meng X, Liu H. Biodistribution, excretion, and toxicity of mesoporous silica nanoparticles after oral administration depend on their shape. Nanomedicine 2015; 11:1915–1924. https://doi.org/10.1016/j.nano.2015.07.004

  1. Schneid AC, Silveira CP, Galdino FE, Ferreira LF, Bouchmella K, Cardoso MB. Colloidal stability and redispersibility of mesoporous silica nanoparticles in biological media. Langmuir 2020; 36:11442–9. https://doi.org/10.1021/acs.langmuir.0c01571

  1. Meng H, Xue M, Xia T, Ji Z, Tarn DY, Zink JI, Nel AE. Use of size and a copolymer design feature to improve the biodistribution and the enhanced permeability and retention effect of doxorubicin-loaded mesoporous silica nanoparticles in a murine xenograft tumor model. ACS Nano. 2011; 5:4131–44. https://doi.org/10.1021/nn200809t

  1. Chen W, Cheng C-A, Zink JI. Spatial, temporal, and dose control of drug delivery using noninvasive magnetic stimulation. ACS Nano 2019; 13:1292–308. https://doi.org/10.1021/acsnano.8b06655

Share

COinS