

MAAEN JOURNAL FOR MEDICAL SCIENCES

Volume 2 | Issue 1 Article 1

Traditional plants that are utilized to treat urinary tract infections: A review

Rasha Hadi Saleh clinical laboratory sciences, college of pharmacy, university of Babylon Al-Hilla, Babylon, Iraq, rashahadi11@yahoo.com

Aseel Mohammad Omran college of pharmacy, university of Babylon AlHilla, Babylon, Iraq.

Rafah S. Almuttairi AlHilla clinical laboratory sciences, college of pharmacy, university of Babylon

Follow this and additional works at: https://majms.alkafeel.edu.iq/journal

Part of the Biology Commons

Recommended Citation

Saleh, Rasha Hadi; Omran, Aseel Mohammad; and AlHilla, Rafah S. Almuttairi (2023) "Traditional plants that are utilized to treat urinary tract infections: A review," Maaen Journal for Medical Sciences: Vol. 2: Iss. 1, Article 1. Available at: https://doi.org/10.55810/2789-9136.1012

This Review is brought to you for free and open access by Maaen Journal for Medical Sciences. It has been accepted for inclusion in Maaen Journal for Medical Sciences by an authorized editor of Maaen Journal for Medical Sciences. For more information, please contact majms@alkafeel.edu.iq.

REVIEW

Traditional Plants that are Utilized to Treat Urinary Tract Infections: A Review

Rasha Hadi Saleh a,*, Aseel Mohammad Omran b, Rafah S. Almuttairi a

Abstract

Among the most serious problems affecting public health is urinary tract infection (UTI). There are several parts of the urinary tract affected by this type of inflammation and affects women more frequently than men. As the antibacterial resistance problem is growing in urological medicine, there is a increasing and a continuing requirement to add antimicrobial medication which could be from medicinal herbs in regulatory UTIs.

Since the beginning of civilization, medicinal plants have been an integral element of human society in the fight against diseases. For the aim of reducing costs, increasing the effectiveness of treatment and eliminating the side effects of UTI patients, medicinal plants have gained wide popularity and great interest. Medicinal plants have been known as a rich source of therapeutic agents.

A number of different plants show promise the ability to treat of a various urologic disorders. As the current review illustrates, a number of traditional medicinal plants are evaluated to prevent or treat UTIs, and modern scientific investigations on these important herbs and some isolated chemical compounds.

Keywords: UTI, Medical plants, Medical herbs, Uropathogens

1. Introduction

rinary tract infection (UTIs) is one of the most common diseases in humans, this requires rapid and continuous treatment [1]. Urinary tract infection is also the most widely used antibiotics, which leads to the high financial costs for health care organizations if the treatment is not applied immediately and effectively [2]. Infection with this disease includes the parts of the body when urine passes before leaves the body like kidneys, ureters, bladder or urethra. If the infection is not treated effectively, This leads to the success of complications several times in kidney failure.

UTIs affect both males and females, but it's been more likely to occur in females than males during all stages of life as a result of the differences in lifestyle, reproductive and urogenital anatomy and physiology. Urinary tract infection accounts for about 25%

of bacterial infections in women of all infections [3]. Reports have stated that at least 50% of women have at minimum one infection during their throughout their lifespan [4]. The more risk factors for UTI in female are the anatomy, age, sexual activity, and menopause. Urinary tract abnormalities, obstruction, and catheterization operations also consider dangerous factors that cause this disease [5].

Pregnant women, which have UTI may cause high blood pressure and premature delivery. Women who use contraceptives are more likely to get UTIs because of immune destruction in these women. Pregnant women can transmit the infection for infants and children. According to studies indicate that postmenopausal women are more prone to develop UTI as a result of estrogen deficiency, increased *Escherichia coli* and decrease of *Lactobacilli* ssp. in the vaginal flora [3].

Urethral catheter is associated with UTI, and the probability of infection rises with the duration of the

Received 19 October 2022; revised 26 November 2022; accepted 5 December 2022. Available online 10 January 2023

* Corresponding author.

E-mail addresses: rashahadi11@yahoo.com, rashaalesawi@gmail.com (R.H. Saleh).

^a Clinical Laboratory Sciences, College of Pharmacy, University of Babylon Al-Hilla, Babylon, Iraq

^b College of Pharmacy, University of Babylon AlHilla, Babylon, Iraq

infection. *Catheter-Associated Urinary Tract Infections* (CAUTI) affects both men and women, with long-term urinary catheterization almost ever result in urine containing bacteria. Daily catheterization may elevate the chance to acquire of typical CAUTI to 3–7% [6].

Repeated urinary tract infections (RUTIs) are those that have occurred three times in the previous year or twice in the previous six months. 20–30% of women who have experienced one form of UTI may experience a regular UTI, and about 25% of them will progress to recurring instances [7].

2. Types and clinical finding of UTI

UTI is classified into two types, complicated and uncomplicated. The pathogenesis of these types are complex and influenced by many host biological, behavioral factors and properties of the infecting uropathogens [8]. Complicated type happen in people have disorders or abnormalities in every segment of the urinary tract, more likely to develop a complicated type of infection, which is more severe and difficult to cure [9].

The most prevalent type of UTI is an uncomplicated one, which develops when there are no obvious symptoms or abnormalities in the urinary tract [10]. Clinical indications of UTI involve a Strong and persistent urges to urinate, frequent urination, and a short urine volume. Another symptoms including hazy urine, red or bright pink colored, women's pelvic pain, nauseousness, and vomiting may be linked features [11].

2.1. The etiology of UTI

The microorganisms that mainly account for UTI are the Gram-negative enteric bacteria, especially *E. coli*. Uropathogenic *E.coli* (UPEC) is the primary bacteria recovered from people with urinary infections (75–90% of isolates), other Gram negative and positive bacteria like *Proteus mirabilis*, *Klebsiella pneumoniae*, *Pseudomonas aeruginosa*, *Staphylococcus saprophyticus* and *Enterococcus faecalis* are the causative agents of for the other infections [12].

A bacterial pathogen capable prevents urine from passing the urinary system and preserve it by forming pentagonal adhesions with glycolipids and glycoproteins on the epithelial tissue of the urinary tract. In most cases, the bacteria that cause UTIs work to control the periphery of the urethra, and thus the infection develop. Natural bacteria can prevent pathogenic bacteria from colonizing, it is

also possible for the defense mechanisms in the bladder to eliminate disease colonies, as well as the urinary catheter can also control the spread of disease.

2.2. Therapy of UTI

Antibiotics are the are the effective t treatment for both acute and chronic UTIs. But the wide use of antibiotics give the resistant bacterial pathogens and lead to the extent of antibiotic resistance [13]. It is predicted that antibiotic resistance will continue to increase. There are need to consider alternatives to antibiotics.

2.3. Chemical constituents and mechanism of action of medical herbs

Medicinal plants are a wealthy origin of bioactive component, such as flavonoids, alkaloids glycosides and phenols that have several health properties [1] (Bahmani et al.,2015). Use of phytochemicals in the prevention or treatment of many diseases like urinary infections is a very old tradition [14].

The investigations of non-chemical treatment of UTI have directed to the stages of the pathogenesis, including: colonization, adherence of microbes to the receptors on epithelial cell and invading [6]. So far, there is no integrated study on how medicinal herbs work to cure a UTI, but researches have revealed that medicinal herbs possess secondary compounds that inhibit the pathogens of this disease: inhibiting the obsession of bacteria in the urinary tract and stopped it from growing (like antibiotics, act as diuretics in which help flush out the bladder, heal the bladder wall, decrease pain and inflammation, antioxidants and immunomodulators.

These various properties in medicinal plants are because of the presence of different secondary metabolites such as alkaloids, flavonoids, glycosides, phenols, saponins, steroids, sterols, tannins, terpenoids, hydrocarbons, phlobatannins and many others phytochemicals directly related to plants' antimicrobial properties [15].

The antibacterial effect of many plant extracts was reported using different techniques such as agar well diffusion, disk diffusion and minimum inhibitory concentration (MIC) of the raw herbal extracts, but researches on the specific activity of the phytochemicals against bacteria are limited [16]. The resistance problem that occurs due to the use of synthetic medicines can be reduced by using medicinal plants which contain phytochemicals that are accountable for their useful actions and the synergistic activity of medicinal plants [3].

Table 1. Some of herbal medicines used for urinary tract infections.

	Botanical name	Common/local names	Parts used	Method of use	Active phytochemicals	Mechanism of action	References
1	Vaccinium macrocarpon	cranberry	fruit	Dried fruits, juice, tablets or cranberry capsules	proanthocyanidin such as anthocya- nidin, catechin, fla- vanols, quercetin, and phenolic compounds	may be act against UTIs because it prevents bacteria <i>E.</i> coli, that cause UTI, from attaching the walls of the bladder	[5,17]
2	V. oxycoccos	Cranberry	Fruit and leaf	Raw fruit, encapsulated extracts,	Flavonoids, antho cyanidin cyanidin, peonidin and quercetin, and proanthocyanins	preventing the adhe sion of type 1 and p-fimbriae strains (particularly from <i>E. coli</i>) to the urothelium	[18,19]
3	Vaccinium myrtillus	Blueberry	fruit and leaves	preserves, jams, and juices,	flavonols (quer cetin, catechins), but anthocyanins make by far the largest	antimicrobial effects against human patho gens antiflammato-ry effect	[5,20]
4	V. corymbosum	Blue swamp, blue berry,	Leaf and fruit	Raw fruit, juice, syrups, herbal teas	Citric and malic acids, alkaloids, and petunidol	antimicrobial effects against human pathogens	[18]
5	Vaccinium angustifolium)	blueberry	Fruit and leaves	juice cocktail Concentrated cranberry extract in the form of tablets and capsules	Tannins	Inhibit E. coli because of its ability to adhere walls of the bladder	[17]
6	Arctostaphylos A. uva-ursi	UvaUrsi, kinnikinnick,	Leaf	use as tea	Ursolic acid, gallic acid, and flavonoids	Antimicrobials (including urinary antiseptics) Diuretics, it facilitates the removal of kidney and bladder stones	[18,17]
7	Cinnamomum verum	Cinnamon, true cinnamon tree	Bark and leaf	Spice, or decoction of bark and leaves	Camphor, cinna maldehyde, and proanthocyanidins	Proven to completely suppress UTIs causing bacteria and fungus	[3]

(continued on next page)

Table 1. (continued)

	Botanical name	Common/local names	Parts used	Method of use	Active phytochemicals	Mechanism of action	References
8	Juniperus communis	Juniper	Fruits, berries, and leaves	Fruits, bark, and leaves	Terpinen- 4-ol, a volatile oil. Mono terpene, Berberine. The volatile oils of juniper contain nephrotoxic com plexes, especially hydrocarbon terpenoids	Used as an diuretic, antiseptic, stimulant. It is used with chronic cystitis but not used with acute inflammation	[5,17]
9	Rosmarinus officinalis	Rosemary	Aerial part	Extract or juice	rosmarinic acid, carnosol and car nosic acid,	diuretic Antibacterial activity	[21,22]
10	Thymus vulgaris L	Thyme	Flowers, leaves, and oil Aerial part	Tea, beverage,	Monoterpenes, carvacrol., thymol monoterpene hy drocarbons γ-terpi nene and p-cymene	Antiseptic and antimicrobial properties, diuretic	[22-24]
11	Origanum majorana	Marjoram	Aerial part	Juice infusion	monoterpene alcohol, terpinene- 4-ol carvacrol and thymol are p-cym ene and α- terpinene	Antibacterial activity	[22,25]
12	Ammi visnaga	Khella Baldi or toothpick weed	fruit	fruit decoction powdered	polyphenolic com pounds including flavonoids, as well as γ-pyrones, rep resented mainly by khellin and visnagin	Diuretic, antimicrobial effect	[26]
13	Zea mays L.	Corn silk, maize	collection of the stigmas from the female flowers	Extract(Tea)	tannins terpenoids, alka loids and flavo noids change in urinary PH, and prevention of growth and adhesion of patho- gens is very important	anti-inflammatory diuretic Antispasmodics For bladder involvement	[17,27,28]

14	Petroselinum crispum var. crispum	Parsley, French persillade	Aerial part	Essential oils, raw leaf can be crushed, infusion of leaves, seed, and roots	Carotenoids, Ascorbic acid, Flavonoids, Apiole, terpenoids,Cou- marin, phenyl propanoid- s,tocopherol,and furanocoumarins	Antispasmodic, anti- inflammatory diuretic	[29,30]
15	Agathosma betu- lina(previously BarosmaBetulina)	Buchu, bucco	Leaf and stalk	Drink as tea, maceration of leaves Volatile oils, Flavonoids	Limonene and Dio- sphenol and are the most imperative in UTIs	Antimicrobials (including urinary antiseptics) and diuretic Its volatile oil induce urination and is secrete practicallyby the kidneys	[17,18]
16	Hybanthus enneaspermus	Spade flower	Leaf	Infusion of leaves	Flavonoids, Phe nols, Terpenoids, and Alkaloids	antimicrobial activity	[3,5,31]
17	Equisetum arvense	horsetail Dome asb	Aerial part	Boiled	Alkaloids, phytos- terols, tannins, tri terpen,and pheno lics, Phenolic compounds, act as antibacterial activities	Diuretics Antispasmodics For bladder involvement	[5,17]
18	Hydrastis canadensis	Goldenseal, or- ange root, yellow plant	Leaf	Infusion of leaves, food supplement	Berberine, (alka loid)hydrastine, saponin, and flavonoid	Antimicrobials, inhib iting bacteria by adhering the walls of the bladder present in the goldenseal	[17,32]
19	Zingibar officinale	Ginger	Roots	Fresh ginger, dried root	Zingiberene, Zingi berol, dihydropar adols, and gingerols	Anti-inflammatory	[3,5]
20	Plantago lanceolata	Plantain	Leaf	dried leaf, dry extract, liquid extract, soft extract, herbal substance, and syrup	Mixture of muci lage, organic acids, polysaccharides, and flavonoids.	Diuretics	[5,33]
21	Allium sativum	Garlic Lehsan	Garlic bulbs and cloves	Raw garlic used as infusion, soaking, food additive, essen tial oil	volatile oil, allicin, alliin, acrolein, disulphide and dia- llyl-trisulfide	Antimicrobials (including urinary antiseptics)	[3,17]

(continued on next page)

Table 1. (continued)

	Botanical name	Common/local names	Parts used	Method of use	Active phytochemicals	Mechanism of action	References
22	Cochlearia Armoraciar	Horseradish	Root	Capsule, juice	isothiocyanates Volatile oils	Act as anti bacteria that cause UTIs Diuretic and used by herbalists to treat kidney stones and edema	[5,17]
23	Coriandrum sativum	Coriander, Chi nese parsley,	Leaf and seed	Food flavors, seeds essential oil	Carvone, geraniol, limonene, camphor, and alkanals	Diuretic	[18,34,35]
24	Terminalia chebula	black or chebulic myrobalan,	Fruit and roots	Dried fruit as powder, decoc tion of roots	Chebulin, Tannin, Fatty acids and Betulinic acid	Ac tas antimicrobial potential against multidrug resistant uropa thogenic <i>E. coli</i>	[4,8] [3,17],
25	Cucumis sativus L	Sasa	Seed	Seeds can be grinded with salts	Glycosides, Tannin, sterol, Terpens.	Diuretic	[36,37]
26	Camellia sinensis	Green tea, tea shrub Green Tea	Leaf	Dry leaves, aqueous extract	Phenols, glycosides, alkaloids, and polyphones	antimicrobial effects	[38,39]
27	Apium graveolens L.	Celery, Apium	Seeds, and aerial parts	Seed essential oil,	Succinic acid, iso fraxidin, lunularin, and eugenic acid.	Antispasmodic	[3,30]
28	Trachyspermum copticum	Ajowan, bishop's Weed	Leaf and fruit	Essential oil of fruits, infusion of leaves	Terpinene, p-cym ene,xylene, palmiti- cacid and thymol	Antimicrobial effects	[3,8]
29	Taraxacum officinale	Dandelion	Leaves and flowers	Soup or salads contain raw or cooked leaves, and maceration of leaves	Inulin, Phenolic acids, Taraxacin, Sesquiterpene, and catortenoids	Diuretics	[18]
30	Arctium lappa	Greater burdock, <i>lappa</i> ,	Roots and seeds	Infusion of seeds and roots	Caffe oylquinic acid, Caffeic acid, and Rhamnosid	Act as antinbacterial and anti fungal and act against UTIs	[3,17]
31	Mentha piperita	Peppermint	Leaf	Infusion of leaves flavoring element	Menthol, Men thone, limone, and pulegone	diuretic effects, anti- inflammatory	[3,40]
32	Ocimum sanctum	Holy basil, tulsi	leaves, stems, flowers, roots, and seeds	Infusion, of any part of plant	Polyphenol, Flavo noids, Flavonols, Betasitosterol, luteolin, and apigenin	Antimicrobial activity	[4,8]

33	Moringa oleifera	Moringa	Leaf, flowers, and fruits	Raw, dried fruits, leaves as tea	Thiocarbamate Kaempferol, acety- lated, and Spirochin	Diuretic, improved renal function	[4,41]
34	Phyllanthus amarus	Sleeping plant Jangli Amli	whole plant	Decoction of the whole plant, juice	Tannins, flavo noids, terpenoids, corilagin, niranthin	anti-inflammatory and antimicrobial propertie	[3,42]
35	Boerhavia diffusa	Punarnava, red spiderling, biskhapra	Leaves and roots	Leaves as vege- tarian dish	Lignin, arachidic acid, lignin, glyco sides and boer avinone B	antimicrobial activity	[4,43]
36	Tribulus terrestris	Kharkhasak, Gokhru. Goat's head, bullhead,	Roots, leaves, and fruits	Infusion of dried roots and leaves powder	Saponins, kaemp- ferol, hecogenin, neohecogenin glucoside, and cin namic amide	Antimicrobial activity	[3,44]
37	Azadirachta ind ica A. Juss	Neem	Fruits, leaves, and bark	Infusion, of leaves, oil of fruits	phenols, cardiac glycosides, and tannins	anti-inflammatory, and antimicrobial properties	[4,45]
38	Berberis aquifolium	Oregon grape	Root	Tea	Berberine	kills microorganisms, that cause urinary tract infections	[5] [17],
39	Sassafras albidum	Sassafras	Inner bark of the root	beverage or tea	Volatile oil	Diuretics, Antiseptic	[17]
40	Urtica dioica	nettle	root	extracts	Lignans Poly saccharides and lectins	Antimicrobial activity Mild diuretic Anti-inflammatory	[5,41]
41	Galium aparine L.	Cleavers, goose- grass, catchweed, stickyweed	Stems, leaves, and fruit	leaves and stems as food flavors, fruit as coffee, soaking of leaves	Glycosides, Iridoid alkaloids, and Citric acid	Diuretics	[7,18]
42	Levisticum officinale	lovage	Root	Tea	Terpenoids and coumarins diuretic, but lacks the anti-inflammatory and has a milder spasmolytic effect	diuretic.	[41]
43	Clitoria ternatea	Darwin pea, butterfly pea	Root, bark, seed	Root can be used in food	Phenols, Flavo noids, and Saponins	Antimicrobial activity	[46,47]

(continued on next page)

Table 1. (continued)

	Botanical name	Common/local names	Parts used	Method of use	Active phytochemicals	Mechanism of action	References
44	Zizyphus oeno plia (L.) Mill.	Boroi	Roots	decoction	alkaloid, flavonoids, phenolic content and terpenoid, cyclopeptide alka loids such as Ziziphine	antimicrobial activities, diuretic	[48,49]
45	Zizyphus jujuba	Takkul	Fruit	the fruit is taken	Alkaloids, glyco sides, Terpens	Antimicrobial activity	[3,50]
46	Abutilon indicum	Paatri	Roots, leaf	leaves and roots orally	Alkaloids, Terpens, Phenols, Glycosides	Antimicrobial activity diuretic	[51,52]
47	Andrographis paniculata	Kalmegh	Leaf	Fresh leaves	Alkaloids, Anthra cene, Phenols, Tannins	antimicrobial effect	[53,54]
48	Juniperus osteosperma	Utah juniper	leaves,bark, and fruits	fruits and decoction of leaves and bark	Phenolics, alpha- pinene, Terpenoids, Cadinene,	Antimicrobial activity Diuretic activity	[5,18]
49	Acacia nilotica Delile	Babool	Leaves, Gum, Bark	Gum Paste, Powder of Bark	Flavonoids, Glycosides, Saponins	Antimicrobial activity	[3,55]
50	Vigna mungo	Mung	Seeds	Seeds are taken	Flavonoids, Alka loids, Phenols, Tannins	anti-inflammatory	[56]
51	Syzygium cumini (L.)	Jamun, black plum, plum,	Fruits and Bark	Infusion, and salads of fruits	Steroids, Flavo noids, Alkaloids, and terpenoids	Diuretic	[3,57]
52	Emblica officinalis	Amla, Indian gooseberry,	Fruits	Raw and fruits, powder	Alkaloids, Tannins, Phenolic, chebu linic acid, and trigallayl	Antimicrobial activity	[58,59]
53	Prunella Vulgaris	Self- heal	Leaves, Stems	Salads	Steroids, lapel, cya- nidin, delphinidin,	antimicrobial activity	[3,60]
54	Cichorium inty- bus L.	Chicory, blue daisy, dande lion, blueweed	Leaf and root	Tea of the leaves and roots	Flavonoids, Terpe noids, Tannins, Sa ponins, Cardiac glycosides	Antimicrobial activity	[4,61]
55	Bidens pilosa L.	Black-jack, friends, cob blers' peg	Whole herb	Tea of the whole herb	Alkaloids, Flavo noids, Steroids, Anthraquinones, Tannins, Glycosid es, oniSapns	Antimicrobial activity	[4,62]

[63]	[3,64]	[4,65]	
Antimicrobial activity	Antimicrobial activity	Antimicrobial activity	
Flavonoids, alka loids, sterols,	tannins, Alkaloids, Flavo noids,	Carbohydrates, sterols Tannins, Alkaloids, Phenols, Fla vonoides,	Caponino
Seeds are grin ded to take	Seeds as taken	Leaf used as salad, seeds as decoction	
Seeds	Seeds	Leaf, fruit, and seeds	
Source	Mithazira	Mallow	
Brassica nigra	Pimpinella anisum	Malva sylvestris L	
26	57	28	

2.4. Medical herbs used for UTI

The major herbs that used theraputic of UTI with the main phytochemical components that responsible for their effects, their common name, parts used, method of use and mechanism of action is recorded in Table 1.

3. Conclusion

Urinary tract infections are a prevalent phenomenon that impacts patients, the increasing incidence of bacterial resistance among urinary pathogens, caused by the overuse of antibiotics in humans are a significant danger to the public health. Therefore, the investigators focus to identify new herbal treatments for UTIs. Medicinal plants used to treat urinary tract infection pathogens are very active. They possess antibacterial properties, applied locally and was found to possess good healing property. In addition, its easy access and have less toxicity. It was found that may be all the plant parts or extracts used in treatment of urinary tract.

In this review, its illustrated a number of plants to be useful in urinary infections; but many other plants need to be exploited for their pharmacological actions. Also, its study of the activity of the medicinal plants obtained in this study and their activity provides a good source for new drugs in modern medicine.

Conflicts of interest

None declared.

References

- [1] Bahmani M, Saki K, Shahsavari S, Rafieian-Kopaei M, Sepahvand R, Adineh A. Identification of medicinal plants effective in infectious diseases in Urmia, northwest of Iran. Asian Pac J Trop Biomed 2015;5(10):858–64. https://doi.org/10.1016/j.apjtb.2015.06.004.
- [2] Sihra N, Goodman A, Zakri R, Sahai A, Malde S. Nonantibiotic prevention and management of recurrent urinary tract infection. Nat Rev Urol 2018;15:750–76. https://doi.org/ 10.1038/s41585-018-0106-x.
- [3] Shaheen G, Akram M, Jabeen F, Ali Shah SM, Munir N, Daniyal M, et al. Therapeutic Potential of Medicinal Plants for the Management of Urinary Tract Infection: A Systematic Review. Clin Exp Pharmacol Physiol 2019;46:613—24. https://doi.org/10.1111/1440-1681.13092.
- [4] Arsene MMJP, Viktorovna PI, Davares AKL, Esther N, Nikolaevich SSA. Urinary tract infections: Virulence factors, resistance to antibiotics, and management of uropathogenic bacteria with medicinal plants—A review. J Appl Pharmaceut Sci 2021;11(7):1–12.
- [5] Bazzaz BSF, Fork SD, Ahmadi R, Bahman Khameneh B. Deep insights into urinary tract infections and effective natural remedies. Afr J Urol 2021;27:6. https://doi.org/ 10.1186/s12301-020-00111-z.

- [6] Loubet P, Ranfaing J, Dinh A, Dunyach-Remy C, Bernard L, Bruyère F, et al. Alternative Therapeutic Options to Antibiotics for the Treatment of Urinary Tract Infections. Front Microbiol 2020;11:1509. https://doi.org/10.3389/ fmicb.2020.01509.
- [7] Al-Badr A, Al-Shaikh G. Recurrent Urinary Tract Infections Management in Women. Sultan Qaboos Univ Med J 2013; 13(3):359–67. https://doi.org/10.2816/0003256.
- [8] Sharma A, Chandraker S, Patel VK, Ramteke P. Antibacterial Activity of Medicinal Plants Against Pathogens causing Complicated Urinary Tract Infections. Indian J Pharmaceut Sci 2009;71(2):136–9. https://doi.org/10.4103/0250-47 4X. 54279
- [9] Cock I, Mavuso N, Vuuren SV. A Review of Plant Based Therapies for the Treatment of Urinary Tract Infections in Traditional Southern African Medicine. Evid base Compl Alternative Med 2021;2021:1–20. https://doi.org/10.1155/ 2021/7341124.
- [10] Sheerin NS, Glover EK. Urinary tract infection. Medicine 2019;47:546-50. https://doi.org/10.1016/j.mpmed.2019.06.008.
- [11] Mody L, Juthani-Mehta M. Urinary tract infections in older women: a clinical review. JAMA 2014;311(8):844–54. https:// doi.org/10.1001/jama.(2014).303.
- [12] Flower A, Wang L-Q, Lewith G, Liu JP, Li Q. Chinese herbal medicine for treating recurrent urinary tract infections in women. Cochrane Database Syst Rev 2015;6. https://doi.org/ 10.1002/14651858. CD010446.pub2.
- [13] Flower A, Harman K, Lewith G, Moore M, Bishop FL, Stuart B, et al. Standardised Chinese herbal treatment delivered by GPs compared with individualised treatment administered by practitioners of Chinese herbal medicine for women with recurrent urinary tract infections (RUTI): study protocol for randomised controlled trial. Trials 2016;17(1):358. https://doi.org/10.1186/s13063-016-1471-5.
- [14] Das DC, Sinha NK, Patsa MK, Das M. Investigation of herbals for the treatment of leucorrhoea from south west Bengal, India. Int J Bioassays 2015;4:4555—9. https://doi.org/10.21746/IJBIO (2015); 11.0022.
- [15] Gibson L, Pike L, Kilbourn JP. Effectiveness of cranberry juice in preventing urinary tract infections in long-term care facility patients. J Naturop Med 2019;2:45–7. https://doi.org/ 10.1111/jgs.12593.
- [16] Das Sarita. Natural therapeutics for urinary tract infections—a review. Future Journal of Pharmaceutical Sciences. Das Future Journal of Pharmaceutical Sciences. 2020; 6(64):1—13. https://doi.org/10.1186/s43094-020-00086-2.
- [17] Bag A, Bhattacharyya ŠK, Chattopadhyay RR. Medicinal Plants and Urinary Tract Infections: An update. Phoog Rev 2008;4:277–84.
- [18] Saeed S. Herbal remedies for urinary tract infection. Int J Biol Biotechnol 2010;7(4):347–52.
- [19] Hisano M, Bruschini H, Nicodemo AC, SrougiI M. Cranberries and lower urinary tract infection prevention. Clinics 2012;67(6):661–7. https://doi.org/10.6061/clinics/2012(06)18.
- [20] Benzie IFF. Wachtel-Galor Sherbal Medicine:Biomolecular and clinical aspects. second ed. CRC Press/Taylor & Francis; 2011. https://doi.org/10.1201/b10787.
- [21] Andrade JM, Faustino C, Garcia C, Ladeiras D, Reis CP, Rijo P. Rosmarinus officinalis L.: an update review of its phytochemistry and biological activity. Future Sci 2018;4(4): FSO283. https://doi.org/10.4155/fsoa-2017-0124.
- FSO283. https://doi.org/10.4155/fsoa-2017-0124.

 [22] Mourad MH, Salih SA, Mahmoud M, Elaasser MA, Safwat NA, Mostafa Y, et al. Antibacterial activity of certain medical plant and their essential oils on the isolated bacteria from UTI patients. Int J Adv Res 2016;4(12):1510–30. https://doi.org/10.21474/IJAR01/2551.
- [23] Ebani VV, Nardoni S, Bertelloni F, Pistelli L, Mancianti F. Antimicrobial Activity of Five Essential Oils against Bacteria and Fungi Responsible for Urinary Tract Infections. Molecules 2018;23(7):1668. https://doi.org/10.3390/molecules 23071668.

- [24] Dauqan EMA, Abdullah A. Medicinal and Functional Values of Thyme (Thymus vulgaris L.) Herb. J Appl Biol Biotechnol 2017;5(2):17–22. https://doi.org/10.7324/JABB.2017. 50203.
- [25] Lagha R, Abdallah FB, Al-Sarhan BO, Al-Sodany Y. Anti-bacterial and Biofilm Inhibitory Activity of Medicinal Plant Essential Oils Against Escherichia coli Isolated from UTI Patients. Molecules 2019;24(6):1161. https://doi.org/10.3390/molecules24061161.
- [26] Khalil N, Bishr M, Desouky S, Salama O, Ammi Visnaga L. A Potential Medicinal Plant: A Review. Molecules 2020;12(2): 301. https://doi.org/10.3390/molecules25020301.
- [27] Kashmar AM, Naser EH. Comparison Between Two Extraction Methods on Total Extract with Primary Investigation of Phytochemical Compounds of Some Medicinal Plants used in Treatment of Urinary Tract Disease. Kerbala journal of pharmaceutical sciences 2017;13:29–36.
- [28] Saleh RH, Hindi NKK, Abid Ali MR. Antibacterial Activity of Aquatic Zea Mays L. Hairs Extract against Different Bacteria in Babylon Province: An *In Vitro* Study. Journal of Global Pharma Technology 2017;8(9):121–9.
- [29] Poulios E, Vasios GK, Psara E, Giaginis C. Medicinal plants consumption against urinary tract infections: a narrative review of thecurrent evidence. Expert Rev Anti Infect Ther 2020;19(4):519–28. https://doi.org/10.1080/ 14787210.2021.1828061.
- [30] Yarnell E. Botanical medicines for the urinary tract. World J Urol 2020;20(5):285-93. https://doi.org/10.1007/s00345-002-0293-0.
- [31] Patel DK, Kumar, Sairam RK, Hemalatha S. Hybanthus enneaspermus (L.) F. Muell: a concise report on its phytopharmacological aspects. Chin J Nat Med 2013;11(3):199—206. https://doi.org/10.1016/S1875-5364(13)60017-5.
- [32] Mandal SK, Maji AK, Mishra SK, Ishfaq PM, Devkota HP, Silva AS, et al. Goldenseal (Hydrastis canadensis L.) and its active constituents a critical review of their efficacy and toxicological issues. Pharmacol Res 2020;160:105085. https:// doi.org/10.1016/j.phrs.2020.105085.
- [33] Pol M, Schmidtke K, Lewandowska S. Plantago lanceolata —An overview of itsagronomically and healing valuable features. Open Agriculture 2021;6:479—88. https://doi.org/10.1515/opag-2021-0035.
- [34] Bezalwar PM, Charde VN. Study on synergistic action of Coriandrum sativum seed extracts on antibiotics against multidrug resistant *P. aeruginosa*. Environ Conserv J 2019; 20(3):83–8. https://doi.org/10.36953/ECJ.2019.20312.
- [35] Vatsa N, Tripathi GS. Biological study of corianadrum sativum against gram negative urinary bacteria. Int J Chem Sci 2012;10(4):2105–10.
- [36] Sood A, Kaur P, Gupta R. Phytochemical screening and antimicrobial assay of various seeds extract of Cucurbitaceae family. IntAppl Biol Pharm Technol 2012;3:401–9.
- [37] Sariyantoa I. Potency of Suri Cucumber Juice Cucumis sativus) as a Solvent for Calcium Oxalate Kidney Stones(CaC2O4). International journal of innovation, creativity and change. Special Edition. Safe Communities; 2020 [Internet].
- [38] Kheirabadi Z, Mehrabani M, Sarafzadeh F, Dabaghzadeh F, Ahmadinia N. Green tea as an adjunctive therapy for treatment of acute uncomplicated cystitis in women: a randomized clinical trial. Complement. Ther Clin Pract 2019;34:13–6. https://doi.org/10.1016/j.ctcp.2018.10.018.
- [39] Noormandi A, Dabaghzadeh F. Effects of green tea on Escherichia coli as a uropathogen. J Tradit Complement Med 2015;5(1):15–20. https://doi.org/10.1016/j.jtcme. 2014.10.005.
- [40] Jamshed A, Jabeen Q. Pharmacological Evaluation of Mentha piperita Against Urolithiasis: An In Vitro and In Vivo Study. Dose-Response. Int J 2022;20(1):15593258211073087. https://doi.org/10.1177/15593258211073087.
- [41] Yadav RD, Alok S, Jain SK, Verma A, Mahor A, Bharti JP, et al. Herbal plants used in the treatment of urolithiasis: A review. 2011. p. 1412–20. https://doi.org/10.13040/IJPSR.0975-8232.2(6).1412-20. 9.

- [42] Saranraj P, Sivasakthivelan P. Screening of Antibacterial Activity of the Medicinal Plant Phyllanthus amarus Against Urinary Tract Infection Causing Bacterial Pathogens. Applied Journal of Hygiene 2012;1(3):19–24. https://doi.org/ 10.5829/idosi.ajh.2012.1.3.71111.
- [43] Vineeth T, Deepak M, Shree A. Antibacterial effect of Boerhavia Diffusa and Punarnavasavam on urinary tract infection (UTI) causing pathogens. World J Pharmaceut Res 2014;3(5): 423–37.
- [44] Al-Bayati FA, Al-Mola HF. Antibacterial and antifungal activities of different parts of Tribulus terrestris L. growing in Iraq. J Zhejiang Univ Sci B 2008;9(2):154–9. https://doi.org/10.1631/izus. B0720251.
- [45] Faujdar SS, Bisht D, Sharma A. Antibacterial potential of neem (Azadirachta indica) against uropathogens producing beta-lactamase enzymes: A clue to future antibacterial agent. Biomed Biotechnol Res J 2020;4:232–8. https://doi.org/ 10.4103/bbrj.bbrj_38_20.
- [46] Manjula P, Moha CH, Sreekanth D, Keerthi B, Devi BP. Phytochemical analysis of Clitoria ternatea Linn., a valuable medicinal plant. J Indian Bot Soc 2013;92(3and4): 173–8.
- [47] Radha KV, Arun T, Srinivas Pidugu S. Antibacterial activity and phytochemical screening of Clitoria Ternatealinn . against proteus mirabilis from urinary tract infected patients. World J Pharmaceut Res 2014;3(3):4351–66.
- [48] Shukla A, Garg A, Mourya P, Jain CP. Zizyphus oenoplia Mill: Areview on Pharmacological aspects. Advance Pharmaceutical Journal 2016;1(1):8–12.
- [49] Behera KK. Ethnomedicinal Plants used by the Tribals of Similipal Bioreserve, Orissa, India: A Pilot Study. Ethnobotanical Leaflets 2006;10:149-73.
- [50] Shad A, Ahmad S, Ullah R, AbdEl-Salam NM, Fouad HF, Rehman NU, et al. Phytochemical and biological activities of four wild medicinal plants. Sci World J 2014:857363. https:// doi.org/10.1155/2014/857363.
- [51] Dhawale PG. Phytochemical analysis of eight medicinal plants from Amravati district(MS) india. Inter J Sci Res Publications 2013;3:1–3.
- [52] Khadabadi SS, Bhajipale NSA. Review on Some Important Medicinal Plants of Abutilon spp. Res J Pharmaceut Biol Chem Sci 2010;1(4):718. https://rjpbcs.com/pdf/20101(4)/[75]. pdf.
- [53] Anand M, Prabarakaran P, Pradeepa V. A study on the phytochemicals characterization and antimicrobial potential of Andrographis. paniculata. J Pharm Res 2011;4:530—1.
- [54] Rasool USP, Parveen A, Sah SK, Hemalatha S. Efficacy of Andrographis paniculata against extended spectrum βlactamase (ESBL) producing E. coli. BMC Compl

- Alternative Med 2018;18:244. https://doi.org/10.1186/s12906-018-2312-8.
- [55] Rokaia B, Elamary RB, Albarakaty FM, Wesam M, Salem M. Efficacy of Acacia nilotica aqueous extract in treating bioflm-forming and multidrug resistant uropathogens isolated from patients with UTI syndrome. Sci Rep 2020;10:11125. https://doi.org/10.1038/s41598-020-67732-w.
- [56] Varma RK, Garg VK, Singh L, Kumar D. Pharmacognostic evaluation and phytochemical analysis of seeds of Vigna mungo (L) hepper. Open Res J Phytother Pharmacogn 2013; 1:01-09.
- [57] Patel P, Ramanarao TV. Growth and Ripening in Black Plum Syzygium cumini (L.) Skeels. Int J Fruit Sci 2014;14:147–56. https://doi.org/10.1080/15538362.2013.817842.
- [58] Khan KH. Roles of Emblica officinalis in medicine-a review. Bot Res Int 2009;2(4):218–28.
- [59] Saeed S, Tariq P. Antibacterial activities of Emblica officinalis and Coriandrum sativum against Gram negative urinary pathogens. Pak J Pharm Sci 2007;20(1):32–5. https://doi.org/ 10.12669/pjms.343.14982.
- [60] Komal S, Kazmi SAJ, Khan JA, Gilani MM. Antimicrobial activity of Prunella Vulgaris extracts against multi-drug resistant Escherichia Coli from patients of urinary tract infection. Pakistan J Med Sci 2018;34(3):616–20. https:// doi.org/10.12669/pjms.343.14982.
- [61] Perazada TA, Gupta J. Distribution of phytochemicals in stems and leaves of Cichorium intybus and Matricaria chamomilla: assessment of their antioxidant and antimicrobial potential. Journal of Biotechnology, Computational Biology and Bionanotechnology 2018;99(2):119–28. https://doi.org/ 10.5114/bta.2018.75655.
- [62] Mohamed SA, Mathew C. Antimicrobial Activity of Bidens pilosa Leaves Extracts Against Staphylococcus aureus and Escherichia coli. Tanzania Veterinary Journal 2021;38. https:// doi.org/10.4314/tvj.v38i1.4s. special Issue of TVA proceedings.
- [63] Piratheepkumar K, Manoharan A, Rajarajeshwari A. A systematic review on selected medicinal plants used in the management of neerchurukku(UTI). International Ayurvedic Medical Journal 2021:520–8. https://doi.org/10.46607/iamj0209032021.
- [64] Saxena S. To study the comparative effectiveness of Pimpinella anisum seed extract and standard antibiotics for urinary tract infections. International Journal of Medical and Biomedical Studies 2020;4(4):24-7. https://doi.org/10.32553/ijmbs.v4i4.1079.
- [65] Fareed I. Using aqueous extract of Malva sylvestris as inhibitor for the growth of some microorganisms that urinary tract infections. IJABR 2017;7(2):329–34.